若矩阵A=相似于对角矩阵Λ,试确定常数口的值,并求可逆矩阵P使P-1AP=Λ.

admin2013-08-30  41

问题 若矩阵A=相似于对角矩阵Λ,试确定常数口的值,并求可逆矩阵P使P-1AP=Λ.

选项

答案由题设,先求矩阵A的特征值,设层为三阶单位矩阵,则由 [*] 可得λ1=6,λ2=6,λ3=-2,欲使A相似于对角阵Λ,应使λ12=6对应两个线性无关的特征向量,因此A-6E的秩为1,于是A-6E=[*] 可得出a=0。从而A=[*],下面求特征向量. 当λ12=6时,由(A-6E)x=0可得出两个线性无关的特征向量为 ξ1=(0,0,1)T,ξ2=(1,2,0)T. 当λ3=-2时,由(A+2E)x=0可得λ3=(1,-2,0)T, 于是[*],且P-1存在,并有P-1AP=Λ, 其中P-1=[*]

解析
转载请注明原文地址:https://jikaoti.com/ti/6icRFFFM
0

最新回复(0)