首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维向量组α1,α2,α3满足2α1一α2+3α3=0,对于任意的n维向量β,向量组lα1β+αα1,l2β+α2,l3β+α3都线性相关,则参数l1,l2,l3应满足关系___________.
设n维向量组α1,α2,α3满足2α1一α2+3α3=0,对于任意的n维向量β,向量组lα1β+αα1,l2β+α2,l3β+α3都线性相关,则参数l1,l2,l3应满足关系___________.
admin
2019-05-14
872
问题
设n维向量组α
1
,α
2
,α
3
满足2α
1
一α
2
+3α
3
=0,对于任意的n维向量β,向量组lα
1
β+αα
1
,l
2
β+α
2
,l
3
β+α
3
都线性相关,则参数l
1
,l
2
,l
3
应满足关系___________.
选项
答案
2l
1
一l
2
+3l
3
=0
解析
因l
1
β+α,l
2
β+α
2
,l
2
β+α
3
线性相关
存在不全为零的k
1
,k
2
,k
3
,使得k
1
(l
1
β+α
1
)+k
2
(l
2
β+α
2
)+k
3
(l
3
β+α
3
)=0,即 (k
1
l
1
+k
2
l
2
+k
3
l
3
)β+k
1
α
1
+k
2
α
2
+k
3
α
3
=0.因β是任意向量,α
1
,α
2
,α
3
满足2α
1
一
2
+3α
3
=0,故令2l
1
一l
2
+3l
3
=0时上式成立.故l
1
,l
2
,l
3
应满足2l
1
一l
2
+3l
3
=0.
转载请注明原文地址:https://jikaoti.com/ti/6RoRFFFM
0
考研数学一
相关试题推荐
(Ⅰ)确定常数a,b,c的值,使得函数f(χ)=χ+aχ5+(b+cχ2)tanχ=o(χ5),其中o(χ5)是当χ→0时比χ5高阶的无穷小量;(Ⅱ)确定常数a与b的值,使得函数f(χ)=χ-(a+bcosχ)sinχ当χ→0时成为尽可能高阶的无
下列区域D上,是否与路径无关?是否存在原函数?若存在,求出原函数.(Ⅰ)D:χ2+y2>0;(Ⅱ)D:y>0;(Ⅲ)D:χ<0;(Ⅳ)D:平面除去射线:y=0,-∞<χ≤0.(若存在原函数,不要求求原函数.)
求下列二重积分计算I=dxdy,其中D为曲线y=lnx与两直线y=0,y=(e+1)-x所围成的平面区域.
设物体A从点(0,1)出发,以速度大小为常数v沿y轴正方向运动,物体B从点(-1,0)与A同时出发,其速度大小为2v,方向始终指向A,任意时刻B点的坐标(x,y),试建立物体B的运动轨迹(y作为x的函数)所满足的微分方程,并写出初始条件.
求引力:在x轴上有一线密度为常数μ,长度为l的细杆,在杆的延长线上离杆右端为a处有一质量为m的质点P,求证:质点与杆间的引力为F=(M为杆的质量).
假设总体X的方差DX=σ2存在(σ>0),X1,…,Xn是取自总体X的简单随机样本,其方差为S2,且DS>0.则
(2001年)设函数f(x)在定义域内可导,x=f(x)的图形如图2.1所示,则导函数y=f’(x)的图形为(见图2.2).()
(1994年)已知A点和B点的直角坐标分别为(1,0,0)与(0,1,1).线段AB绕Z轴旋转一周所成的旋转曲面为S,求由S及两平面z=0,z=1所围成立体的体积.
随机试题
初产妇,29岁。顺利产下一男婴,自诉连续2天发热,多汗,伴下腹阵痛。查体:体温37.5℃,子宫底脐下2指,无压痛,会阴伤口无肿胀及压痛,恶露暗红色,有腥味,双乳胀、有硬结。该产妇腹痛的原因是
CT扫描成像的基本步骤可分为:产生X线,采集数据,重建图像和显示图像。CT成像方式是
治疗牛胎衣不下,子宫内给药位置应在
实施人工授精可能产生的伦理问题如下,除外
小儿指纹郁滞,推之不畅,应属
下列关于体温生理波动的叙述,错误的是
张先生一家三口人,储蓄较少。张先生在油田工作,经常出差作业在外,是家庭的主要收入来源,妻子为教师,收入不高,孩子2岁。为防止张先生发生意外而严重危及家庭生活支出及培养孩子的经济来源,该家庭以张先生为被保险人,购买了一张20年期家庭收入保险单,每月收入保险金
矫正对象具有( )性格特征。
阅读下面材料,回答131~133题。海城市甲公司研发部门技术人员A按公司安排开发一项商业秘密,用于甲公司生产的制鞋机中,甲公司生产的制鞋机因此在华东地区长期销路很好,市场影响大,知名度很高,有时甚至缺货,海城市乙公司也生产制鞋机,由于技术相对落后
给定资料1.进入2018年毕业季,一则关于“95后平均7个月就离职”的调查报告引来网友热议。近年来,随着90后乃至95后步人社会,在这些职场新生代中,一言不合就离职的案例似乎越来越多。“其实谁也不想这样跳来跳去的,真的很累,但如果内心对
最新回复
(
0
)