首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设η1,η2,η3,η4是齐次线性方程组Ax=0的基础解系,则Ax=0的基础解系还可以是( )
设η1,η2,η3,η4是齐次线性方程组Ax=0的基础解系,则Ax=0的基础解系还可以是( )
admin
2019-02-23
50
问题
设η
1
,η
2
,η
3
,η
4
是齐次线性方程组Ax=0的基础解系,则Ax=0的基础解系还可以是( )
选项
A、η
1
-η
2
,η
2
+η
3
,η
3
-η
4
,η
4
+η
1
。
B、η
1
+η
2
,η
2
+η
3
+η
4
,η
1
-η
2
+η
3
。
C、η
1
+η
2
,η
2
+η
3
,η
3
+η
4
,η
4
+η
1
。
D、η
1
+η
2
,η
2
-η
3
,η
3
+η
4
,η
4
+η
1
。
答案
D
解析
由已知条件,Ax=0的基础解系是由四个线性无关的解向量构成的,而选项(B)中仅三个解向量,不符合要求,故选项(B)不是基础解系。
选项(A)和选项(C)中,都有四个解向量,但因为
(η
1
-η
2
)+(η
2
+η
3
)-(η
3
-η
4
)-(η
4
+η
1
)=0,
(η
1
+η
2
)-(η
2
+η
3
)+(η
3
+η
4
)-(η
4
+η
1
)=0,
说明(A)、(C)中的向量组均线性相关,因而选项(A)、(C)也不是基础解系。
用排除法可知选项(D)正确。或者由
(η
1
+η
2
,η
2
-η
3
,η
3
+η
4
,η
4
+η
1
)=(η
1
,η
2
,η
3
,η
4
)
而
知η
1
+η
2
,η
2
-η
3
,η
3
+η
4
,η
4
+η
1
线性无关,又因η
1
+η
2
,η
2
-η
3
,η
3
+η
4
,η
4
+η
1
均是Ax=0的解,且解向量个数为4,所以选项(D)是基础解系。
转载请注明原文地址:https://jikaoti.com/ti/6HoRFFFM
0
考研数学一
相关试题推荐
设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份、7份和5份.随机取出一个地区,再从中抽取两份报名表.求先抽到的一份报名表是女生表的概率p;
设f(x),g(x)在[a,b]上存在二阶导数,且g〞(x)≠0,f(a)=f(b)=g(a)=g(b)=0,证明:(1)在开区间(a,b)内g(x)≠0;(2)在开区间(a,b)内至少存在一点ε,使得
假设G={(x,y)|x2+y2≤r2}是以原点为圆心,半径为r的圆形区域,而随机变量X和Y的联合分布是在圆G上的均匀分布.试确定随机变量X和Y的独立性和相关性.
已知向量α1,α2,α3不共面,证明向量方程组(β,α1,α2)=a,(β,α2,α3)=b,(β,α3,α1)=c的解可以表示为β=(bα1+cα2+aα3).
一个盒子中5个红球,5个白球,现按照如下方式,求取到2个红球和2个白球的概率.(1)一次性抽取4个球;(2)逐个抽取,取后无放回;(3)逐个抽取,取后放回.
微分方程的通解为______.
进行独立重复试验直到试验取得首次成功为止,设每次试验的成功率都是p(0<p<1).现进行10批试验,其各批试验次数分别为5,4,8,3,4,7,3,1,2,3.求:(Ⅰ)试验成功率p的矩估计值;(Ⅱ)试验失败率q的最大似然估计值.
设f(x)连续,且则().
(2003年)已知函数f(x,y)在点(0,0)的某个邻域内连续,且则()
随机试题
焊缝成形的评定都在平焊位置施焊,焊后除去焊渣,观察焊道成形情况。
为什么有些低压线路中用了自动空气开关后,还要串联交流接触器?
男孩,3岁。经常反复呼吸道感染,体格检查发现胸骨左缘第2肋间有2/6~3/6级收缩期杂音,无震颤,P2亢进伴固定分裂。胸透示肺门血管增粗,搏动强烈,右心室饱满。EKG示电轴右偏,V1呈rsR’型,Rv115mm。该患儿最可能的诊断是
人造冠就位的标志是
去甲肾腺素治疗上消化道出血的给药方法是()。
以下属于《国际海运危险货物规则》中的杂类危险物质和物品的范畴的有()。
现阶段我国货币政策的中介目标是()。
个人理财业务中客户委托商业银行理财,实质就是商业银行代理客户理财,客户和商业银行之间是()关系。
根据布卢姆的分类,属于“普遍原理知识”的选项是()
俗话说:“人靠衣装马靠鞍,狗配铃铛跑得欢”,但是你在穿衣时也要注意把握好自己的度,一旦搭配的不当或比例不协调就起不到预期的效果,比如说生活中我们发现,当一个人穿上竖条衣服时,给人的感觉是收缩感,它会显得这个人稍瘦;当一个人穿上横条衣服时,给人的感觉就是扩张
最新回复
(
0
)