首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b—a); (Ⅱ)证明若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且 f’(x)=A,则f+’(0)
(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b—a); (Ⅱ)证明若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且 f’(x)=A,则f+’(0)
admin
2019-07-22
39
问题
(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b—a);
(Ⅱ)证明若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且
f’(x)=A,则f
+
’(0)存在,且f
+
’(0)=A。
选项
答案
(I)作辅助函数φ(x)=f(x)一f(a)一[*],易验证φ(x)满足:φ(a)=φ(b);φ(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且 [*] 根据罗尔定理,可得在(a,b)内至少有一点ξ,使φ’(ξ)=0,即 [*] 所以f(b)一f(a)=f’(ξ)(b一a)。 (Ⅱ)任取x
0
∈(0,δ),则函数f(x)满足在闭区间[0,x
0
]上连续,开区间(0,x
0
)内可导,因此由拉格朗日中值定理可得,存在ξ
x
0
∈(0,x
0
) [*] (0,δ),使得 [*] 又由于[*],对(*)式两边取x
0
→0
+
时的极限 [*] 故f’
+
(0)存在,且f’
+
(0)=A。
解析
转载请注明原文地址:https://jikaoti.com/ti/4JERFFFM
0
考研数学二
相关试题推荐
设f(χ)=|χ3-1|g(χ),其中g(χ)连续,则g(1)=0是f(χ)在χ=1处可导的().
设函数f(χ)=则在点χ=0处f(χ)().
设向量组α1,…,αn为两两正交的非零向量组,证明:α1,…,αn线性无关,举例说明逆命题不成立.
设n维行向量α=(,0,…,0,),A=E-αTα,B=E+2αTα,则AB为().
设n阶矩阵A的伴随矩阵A*≠O,且非齐次线性方程组AX=b有两个不同解η1,η2,则下列命题正确的是().
向量组α1,α2,…,αs线性无关的充分必要条件是
证明:对任意的χ,y∈R且χ≠y,有
设二阶常系数齐次线性微分方程以y1=e2χ,y2=2e-χ-3e2χ为特解,求该微分方程.
(92年)计算曲线y=ln(1一x2)上相应于0≤x≤的一段弧的长度.
(90年)过P(1,0)作抛物线的切线,该切线与上述抛物线及x轴围成一平面图形.求此平面图形绕x轴旋转一周所成旋转体的体积.
随机试题
下列哪个药有止泻作用
能促进脑细胞的氧化还原代谢,增加对糖类的利用,并能调节细胞代谢的药物是
A.海藻B.细辛C.芫花D.甘遂E.天花粉根据十八反原则,不可以与草乌同用的是
机关、团体、企业、事业单位应当履行的消防安全职责有()。
对于固定总价合同的计价方式,承包商为了降低自己在工程量和价格上承担的风险,通常会在合同报价中报较高的()。
信托公司的基本功能定位有哪些?()
社会工作者小平为社区内的低龄老年人设计了一个服务项目,运用艺术治疗方法为老年人开展有益身心的治疗性服务,在活动的设计上,小平应选择()。
The(manage)______ofacompanyisaveryimportantpartoftheworkingprocesstoitsdevelopment.
北京的胡同大多形成于13世纪的元朝,至今已有几百年的历史。北京胡同的走向多为正东正西,宽度一般不超过九米。胡同文化是一种封闭的文化。住在胡同里的居民安土重迁,不大愿意搬家。胡同里有一住几十年的,甚至有住了几辈子的。胡同里的房屋大多很旧了,旧房檩(purli
Forthispart,youareallowed30minutestowriteashortessayoncustomerservice.Youressayshouldincludetheimportanceo
最新回复
(
0
)