首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,3,5,-1)T,α2=(2,7,a,4)T,α3=(5,17,-1,7)T. ①若α1,α2,α3线性相关,求a. ②当a=3时,求与α1,α2,α3都正交的非零向量α4. ③设a=3,α4是与α1,α2,α3都正交
设α1=(1,3,5,-1)T,α2=(2,7,a,4)T,α3=(5,17,-1,7)T. ①若α1,α2,α3线性相关,求a. ②当a=3时,求与α1,α2,α3都正交的非零向量α4. ③设a=3,α4是与α1,α2,α3都正交
admin
2019-07-24
15
问题
设α
1
=(1,3,5,-1)
T
,α
2
=(2,7,a,4)
T
,α
3
=(5,17,-1,7)
T
.
①若α
1
,α
2
,α
3
线性相关,求a.
②当a=3时,求与α
1
,α
2
,α
3
都正交的非零向量α
4
.
③设a=3,α
4
是与α
1
,α
2
,α
3
都正交的非零向量,证明α
1
,α
2
,α
3
,α
4
可表示任何一个4维向量.
选项
答案
①α
1
,α
2
,α
3
线性相关,则r(α
1
,α
2
,α
3
)<3. [*] 得a=-3. ②与α
1
,α
2
,α
3
都正交的非零向量即齐次方程组 [*] 的非零解,解此方程组: [*] 解得α
4
=c(19,-6,0,1)
T
,c≠0. ③只用证明α
1
,α
2
,α
3
,α
4
线性无关,此时对任何4维向量α,有α
1
,α
2
,α
3
,α
4
,α线性相关,从而α可以用α
1
,α
2
,α
3
,α
4
线性表示. 由①知,α=3时,α
1
,α
2
,α
3
线性无关,只用证明α
4
不能用α
1
,α
2
,α
3
线性表示. 用反证法,如果α
4
能用α
1
,α
2
,α
3
线性表示,设α
4
=c
1
α
1
+c
2
α
2
+c
3
α
3
,则 (α
4
,α
4
):(α
4
,c
1
α
1
+c
2
α
2
+c
3
α
3
)=c
1
(α
4
,α
1
)+c
2
(α
4
,α
2
)+c
3
(α
4
,α
3
)=0, 得α
4
=0,与α
4
是非零向量矛盾.
解析
转载请注明原文地址:https://jikaoti.com/ti/3wQRFFFM
0
考研数学一
相关试题推荐
求曲线处的切线与y轴的夹角.
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.写出f(x)在x=c处带拉格朗日型余项的一阶泰勒公式;
求函数在点P(一1,3,一3)处的梯度以及沿曲线x=一t2,y=3t2,z=一3t2在点P参数增大的切线方向的方向导数.
设随机变量X的概率密度为已知EX=2,P{1<X<3}=,求a,b,c的值;
已知A是n阶矩阵,满足A2—2A一3E=0,求矩阵A的特征值.
设X1,X2,…,X9是来自总体X一N(μ,4)的简单随机样本,而是样本均值,则满足P{|-μ|<μ}=0.95的常数μ=_______.(Ф(1.96)=0.975)
设A为反对称矩阵,则(1)若k是A的特征值,-k一定也是A的特征值.(2)如果它的一个特征向量η的特征值不为0,则ηTη=0.(3)如果A为实反对称矩阵,则它的特征值或为0,或为纯虚数.
已知(X,Y)在以点(0,0),(1,-1),(1,1)为顶点的三角形区域上服从均匀分布.(Ⅰ)求(X,Y)的联合密度函数f(χ,y);(Ⅱ)计算概率P{X>0,Y>0},P{X>|Y>0},P{X>|Y=}.
设Ω={(x,y,z)|x2+y2+z2≤1},则
随机试题
封闭式基金的募集期限是3个月,而开放式基金的募集期为6个月。( )
WhatwillhappenonMay15th?
关于皮下结节的描述以下哪项是错误的
A化脑B结脑C病毒性脑膜炎D乙型脑膜炎E新型隐球菌性脑膜炎下列脑脊液的改变符合上述哪种疾病的改变:外观清晰或微混,葡萄糖、氯化物正常,白细胞分类早期以中性粒细胞为主,其后以淋巴细胞为主
病猪,可视黏膜发绀,死后剖检见颌下淋巴结及腹股沟淋巴结明显肿胀,灰白色,质地柔软。肺脏、肝脏及肾脏表面有大小不一的灰白色柔软隆起,切开见有灰黄色浑浊的凝乳状液体流出。病灶组织中的主要炎性细胞是()
已经退休的李先生和李太太是理财新客户,目前正面临如何安度晚年的困惑,需要金融理财师协助规划。经过初步沟通面谈后,理财师获得了以下家庭、职业与财务信息:一、案例成员夫妻俩的一双儿女,大学毕业后,都在外地成家立业。儿子自己创业开了家公司,女儿是位中学英语
下列选项中,忻州市农村信用社联合社不应采取报告形式的有()。
已知函数f(x)=(sinx-cosx)sinx,x∈R,则f(x)的最小正周期是_______.
在中国,只有富士山连锁店经营日式快餐。如果上述断定为真,以下哪项不可能为真?Ⅰ.苏州的富士山连锁店不经营日式快餐。Ⅱ.杭州的樱花连锁店经营日式快餐。Ⅲ.温州的富士山连锁店经营韩式快餐。
随着中国经济的发展,私人轿车进入家庭,对中国人来说已不是遥远的梦想。然而,随着私家车的日益增多,将使本来就十分严重的交通紧张状况面临雪上加霜的困境,因此,中国的交通问题最终必然限制私人轿车的发展。以下哪项如果为真,将最能驳斥上述观点?
最新回复
(
0
)