设3阶矩阵A的特征值为2,-2,1,B=A2-A+E,其中E为3阶单位矩阵,则行列式|B|=___________________.

admin2021-02-25  30

问题 设3阶矩阵A的特征值为2,-2,1,B=A2-A+E,其中E为3阶单位矩阵,则行列式|B|=___________________.

选项

答案21

解析 本题考查用方阵的特征值与特征向量以及相似矩阵的理论计算行列式.所涉及的知识点是:若λ是A的特征值,则φ(λ)是φ(A)的特征值;特征值的积等于该矩阵的行列式的值.
设3阶矩阵A的特征值为2,-2,1,而由B=A2-A+E知B的特征值为3,7,1,所以|B|=21.故应填21.
转载请注明原文地址:https://jikaoti.com/ti/2uARFFFM
0

随机试题
最新回复(0)