设A是n阶正定矩阵,证明:|E+A|>1.

admin2019-08-23  42

问题 设A是n阶正定矩阵,证明:|E+A|>1.

选项

答案因为A是正定矩阵,所以A的特征值λ1>0,λ2>0,…,λn>0, 因此A+E的特征值为λ1+1>1,λ2+1>1,…,λn+1>1, 故|A+E|=(λ1+1)(λ2+1)…(λn+1)>1.

解析
转载请注明原文地址:https://jikaoti.com/ti/2rtRFFFM
0

随机试题
最新回复(0)