首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
η*是非齐次线性方程组Ax=b的一个解,ξ1…,ξn-r,是对应的齐次线性方程组的一个基础解系.证明: η*,η*+ξ1,…,η*+ξn-r线性无关.
η*是非齐次线性方程组Ax=b的一个解,ξ1…,ξn-r,是对应的齐次线性方程组的一个基础解系.证明: η*,η*+ξ1,…,η*+ξn-r线性无关.
admin
2016-03-05
31
问题
η
*
是非齐次线性方程组Ax=b的一个解,ξ
1
…,ξ
n-r
,是对应的齐次线性方程组的一个基础解系.证明:
η
*
,η
*
+ξ
1
,…,η
*
+ξ
n-r
线性无关.
选项
答案
假设η
*
,η
*
+ξ
1
…,η
*
+ξ
n-r
线性相关,则存在不全为零的数c
0
,c
1
…,c
n-r
使得下式成c
0
η
*
+c
1
(η
*
+ξ
1
)+…+c
n-r
(η
*
+ξ
n-r
)=0,即(c
0
+c
1
+…+c
n-r
)η
*
+c
1
ξ
1
+…+c
n-r
ξ
n-r
=0. (2) 用矩阵A左乘上式两边,得0=A[(c
0
+c
1
+…+c
n-r
)η
*
+c
1
ξ
1
+…+c
n-r
ξ
n-r
]=(c
0
+c
1
…+c
n-r
)Aη
*
+c
1
Aξ
1
+…+c
n-r
Aξ
n-r
,=(c
0
+c
1
…+c
n-r
)b,因为b≠0,故c
0
+c
1
+…+c
n-r
=0,代入(2)式,有c
1
ξ
1
+…+c
n-r
ξ
n-r
=0,ξ
1
,…,ξ
n-r
是对应的齐次线性方程组的一个基础解系,故ξ
1
,…,ξ
n-r
线性无关,因此c
1
=c
2
=…=c
n-r
=0,即得c
0
=0.与假设矛盾.综上,所给向量组η
*
,η
*
+ξ
1
,+…η
*
+ξ
n-r
线性无关.
解析
转载请注明原文地址:https://jikaoti.com/ti/0RDRFFFM
0
考研数学二
相关试题推荐
设3阶实对称矩阵A=(a1,a2,a3)有二重特征值λ1=λ2=1,且a1+2a2=a3,A*是A的伴随矩阵.求方程组A*x=0的通解.
设积分I=∫0+∞1/(xa+xb)dx(a>b>0)收敛,则()
求函数f(x)=,-1≤x≤1的表示式.
设函数f(x),g(x)在[a,b]内二阶可导,g”(x)≠0,f(a)=g(a)=f(b)=g(b)=0,证明:在(a,b)内g(x)≠0;
设A,B为三阶矩阵,A~B,λ1=-1,λ2=1为矩阵A的两个特征值,又|B-1|=则=________
用恒等变形法或提公因式法化简极限函数,再用等价无穷小代换求出结果.[*]
已知三阶矩阵,记它的伴随矩阵为A*,则三阶行列式________.
已知4维列向量α1,α2,α3线性无关,若βi(i=1,2,3,4)非零且与α1,α2,α3均正交,则秩r(β1,β2,β3,β4)=
设随机变量X服从参数为2的指数分布,证明:Y=1-e-2x在区间(0,1)上服从均匀分布.
设级数收敛,而是收敛的正项级数,证明:存在正数M,使|un|≤M,n=0,1,2,…
随机试题
简述患者的权利。
休克主要的病理生理改变是
烧伤面积计算,发部占全身面积的
A.胃脘绵绵冷痛,时发时止,喜温喜按,食后缓解B.胃脘隐隐灼痛,饥不欲食,或胃脘嘈杂C.脘腹冷痛,痛势暴急,遇寒加剧,得温痛减D.胃脘灼痛,拒按,渴喜冷饮E.脘腹胀满疼痛、拒按,嗳腐吞酸,厌食
根据法律和有关规定,行政机关作出()的决定前,当事人有权要求该行政机关举行听证。
根据《合伙企业法》规定,下列关于合伙事务执行及合伙管理的说法中,正确的有()。
根据下列资料.回答下列题。改革开放30年,我国国民经济保持了长期、高速、稳定增长,对世界经济平稳增长作出了积极贡献。我国经济对世界经济的贡献率(当年各国GDP增量与世界GDP增量之比)也大幅提升。1978年,我国经济对世界经济的贡献率为2.3%,
贯彻“三个代表”重要思想,关键在于()。
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是()
GeorgeSand(AuroreLucileDupin)wasoneofthefirstEuropeanwriterstoconsidertheruralpoortobelegitimatesubjectsforl
最新回复
(
0
)