首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若3阶矩阵A的特征值为﹣1,1,2,则|A*+2E|=_________.
若3阶矩阵A的特征值为﹣1,1,2,则|A*+2E|=_________.
admin
2020-06-05
30
问题
若3阶矩阵A的特征值为﹣1,1,2,则|A
*
+2E|=_________.
选项
答案
0
解析
方法一 因为A的特征值λ与它的伴随矩阵A
*
的特征值μ的关系为μ=
,而A
*
+2E的相应特征值为γ=2+μ,即γ=2+
.又因为|A|=λ
1
λ
2
λ
3
=(﹣1)×1×2=﹣2,因此A
*
+2E的特征值依次为γ
1
=2+
=2+
=4,γ
2
=2+
=2+
=0,γ
3
=2+
=2+
=1,从而可得|A
*
+2E|=γ
1
γ
2
γ
3
=0.
方法二
取A=diag(﹣1,1,2),则A
*
=﹣2diag(﹣1,1,1/2)=diag(2,﹣2,﹣1),进而有
A
*
+2E=diag(2,﹣2,﹣1)+diag(2,2,2)=diag(4,0,1)
于是
|A
*
+2E|=4×0×1=0
转载请注明原文地址:https://jikaoti.com/ti/0L9RFFFM
0
考研数学一
相关试题推荐
设随机事件A与B互不相容,且A=B,则P(A)=_______.
假设二维随机变量(X,Y)在矩形区域G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布,记求U和V的相关系数ρ。
袋中有n张卡片,分别记有号码1,2,…,n,从中有放回地抽取k次,每次抽取1张,以X表示所得号码之和,求EX,DX.
设A,B为n阶矩阵,则下列结论正确的是().
以下4个命题:①设f(x)是(-∞,+∞)上连续的奇函数,则∫-∞+∞f(x)dx必收敛,且∫-∞+∞f(x)dx=0;②设f(x)在(-∞,+∞)上连续,且∫-RRf(x)dx存在,∫-∞+∞f(x)dx出必收敛,且∫-∞+∞f(x)dx=∫-RRf
设函数f(x)任(-∞,+∞)内单调有界,{xn}为数列,下列命题正确的是
二次型xtAx正定的充要条件是
n阶矩阵A和B具有相同的特征值是A和B相似的()
设A为3阶实对称矩阵,如果二次曲面方程(χ,y,z)A=1在正交变换下的标准方程的图形如图所示,则A的正特征值的个数为()
[2009年]设二次型f(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3—2x2x3.求二次型f(x1,x2,x3)的矩阵的所有特征值;
随机试题
在时间流动的地方,一定有种子在歌唱。我向大地的远方走去,我将播下我的种子。以上材料引发了你哪些思考?请结合自己的理解和感悟,自选角度写一篇不少于800字的文章。要求:①题目自拟,立意自定,文体自选;②不得套作,不得抄袭;③用规范汉字书写。
汗证的主要原因有
男性,40岁。中上腹隐痛5年余,胃纳差1个月就诊。检查上腹部轻度压痛,胃液分析BAO为0,MAO0.5mmol/L。要明确诊断,首选的检查方法是
新生儿缺氧缺血性脑病时发生惊厥.首选的药物是
我国第一部中成药药典是
下列方程中代表双叶双曲面的是()。
本题根据2013年教材进行了删减。某股份有限公司(下称公司)于2006年6月在上海证券交易所上市。2007年以来,公司发生了下列事项:(1)2007年5月,董事赵某将所持公司股份20万股中的2万股卖出;2008年3月,董事钱某将所持公司股份10万股中的2
辛亥革命失败的主观原因是
“当一位杰出的老科学家说什么是可能的时候,他差不多总是对的;但当他说什么是不可能的时候,他差不多总是错的。”这一名言的哲学意蕴是()
Muchunfriendlyfeelingtowardscomputershasbasedonthefearofwidespreadunemploymentresultingfromtheirintroduction.C
最新回复
(
0
)