首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,α1,α2,α3是n维列向量,且α1≠0,Aα1=α1,Aα2=α1+α2,Aα2=α1+α2,试证α1,α2,α3线性无关.
设A是n阶矩阵,α1,α2,α3是n维列向量,且α1≠0,Aα1=α1,Aα2=α1+α2,Aα2=α1+α2,试证α1,α2,α3线性无关.
admin
2018-08-12
37
问题
设A是n阶矩阵,α
1
,α
2
,α
3
是n维列向量,且α
1
≠0,Aα
1
=α
1
,Aα
2
=α
1
+α
2
,Aα
2
=α
1
+α
2
,试证α
1
,α
2
,α
3
线性无关.
选项
答案
由Aα
1
=α
1
,Aα
2
=α
1
+α
2
,Aα
3
=α
2
+α
3
,得(A—E)α
1
=0,(A—E)α
2
=α
1
,(A—E)α
3
=α
2
. 设数λ
1
,λ
2
,λ
3
,使λ
1
α
1
+λ
2
α
2
+λ
3
α
3
=0, (1) 用A—E左乘上式两边,得λ
2
α
1
+λ
3
α
2
=0. (2) 再用A—E左乘(2)式两边,得λ
3
α
1
=0.而α
1
≠0,于是λ
3
=0. 代入(1)、(2),得λ
2
=0,λ
1
=0,故α
1
,α
2
,α
3
线性无关.
解析
本题考查向量组线性相关性的概念,是比较典型的证明方法.
转载请注明原文地址:https://jikaoti.com/ti/zJWRFFFM
0
考研数学二
相关试题推荐
=_______
设的特征向量,则a=_______,b=_______.
设=∫0xcos(x-t)2dt确定y为x的函数,求
设矩阵A满足(2E-C-1B)AT=C-1,且,求矩阵A
设A=(aij)n×n为实对称矩阵,求二次型函数f(x1,x2,…,xn)=在Rn上的单位球面S:x12+x22+…+xn2=1上的最大值与最小值.
设f(x,y)=kx2+2kxy+y2在点(0,0)处取得极小值,求k的取值范围.
设f(x,y)在点(0,0)处连续,且其中a,b,C为常数.(1)讨论f(x,y)在点(0,0)处是否可微,若可微则求出df(x,y)|(0,0);(2)讨论f(x,y)在点(0,0)处是否取极值,说明理由.
设f(x)为[0,1]上单调减少的连续函数,且f(x)>0,试证:存在唯一的点ξ∈(0,1),使得∫0ξf(x)dx=(1一ξ)f(ξ)成立.
设X的概率密度为f(x)=,一∞<x<+∞,(1)求E(X)和D(X);(2)求X与|X|的协方差,判断X与|X|是否不相关;(3)判断X与|X|是否相互独立.
如图3—3,连续函数y=f(x)在区间[一3,一2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[一2,0],[0,2]的图形分别是直径为2的下、上半圆周.设F(x)=∫0xf(t)dt,则下列结论正确的是()
随机试题
某公司销售部门主管大华拟对本公司产品前两季度的销售情况进行统计,按下述要求帮助大华完成统计工作:在“产品销售汇总表”中,在不改变原有数据顺序的情况下,按一二季度销售总额从高到低给出销售额排名,填入Ⅰ列相应单元格中。将排名前3位和后3位的产品名次分别用标
花橙黄白毫属于红碎茶中的()。
Itisthroughlearningthattheindividual______manyhabitualwaysofreactingtosituations.
消化性溃疡患者可食用的食物是()。
A.家族史B.生产史C.喂养史D.生长发育史E.预防接种史怀疑小儿患脾胃疾病时,特别要注意询问()
城市规划编制和主要依据不包括()。
某施工单位在一起工程质量诉讼中,委托其法务部负责人李某为诉讼代理人,其向人民法院出具的授权委托书中仅注明李某为全权代理,未列举具体权限,则李某有权()。
三浦公司为增值税一般纳税人,有关固定资产业务如下:(1)三浦公司于2007年11月20日一次购入了三套不同型号且具有不同生产能力的设备A、B、C,B、C设备购入后即投入生产,A设备需要安装方可投入使用。三浦公司为该批设备付款5800000元,增值税额98
格雷欣法则开始于以下哪种货币制度()。
Thetaxidriverwasamaninhislatethirties.Hepickedmeupand【C1】________metomyplace.Iusuallyliketohavebrief【C
最新回复
(
0
)