首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2004年试题,三(2))设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=-x(x2一4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.(I)写出f(x)在[一2,0)上的表达式;(Ⅱ)问k为何值时f(x)在x=0处可
(2004年试题,三(2))设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=-x(x2一4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.(I)写出f(x)在[一2,0)上的表达式;(Ⅱ)问k为何值时f(x)在x=0处可
admin
2019-03-21
51
问题
(2004年试题,三(2))设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=-x(x
2
一4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.(I)写出f(x)在[一2,0)上的表达式;(Ⅱ)问k为何值时f(x)在x=0处可导.
选项
答案
由题设,f(x)=x(x
2
—4),x∈[0,2]当x∈[一2,0)时,x+2∈[0,2),则由f(x)=kf(x+2)知f(x)=kf(x+2)=k(x+2)[(x+2)
2
一4]=k(x+2)(x
2
+4x)=kx(x+2)(x+4),x∈[一2,0)由导数定义及f(0)=0,有[*]令f
’
(0
+
)=f
’
(0
-
),则[*],所以当[*]时f(x)在x=0处可导.
解析
转载请注明原文地址:https://jikaoti.com/ti/ymLRFFFM
0
考研数学二
相关试题推荐
求函数f(x)=在区间[e,e2]上的最大值.
设f(x)在[a,b]有二阶连续导数,M=|f"(x)|,证明:
设z=f(x,y,u),其中f具有二阶连续偏导数,u(x,y)由方程u5-5xy+5u=1确定.求
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点(1)求曲线L的方程;(2)求L位于第一象限部分的一条切线,使该切线与L及两坐标轴所围图形的面积最小
设f(χ)连续,φ(χ)=∫01f(χt)dt,且=A.求φ′(χ),并讨论φ′(χ)在χ=0处的连续性.
设f(x)二阶可导,且f(0)=0,令g(x)=(Ⅰ)确定a的取值,使得g(x)为连续函数;(Ⅱ)求g’(x)并讨论函数g’(x)的连续性.
某湖泊水量为V,每年排入湖泊中内含污染物A的污水量为,流入湖泊内不含A的水量为,流出湖的水量为.设1999年底湖中A的含量为5m0,超过国家规定指标.为了治理污染,从2000年初开始,限定排入湖中含A污水的浓度不超过.问至多经过多少年,湖中污染物A的含量降
(03年)设位于第一象限的曲线y=f(x)过点,其上任一点P(x,y)处的法线与y轴的交点为Q,且线段PQ被x轴平分.(1)求曲线y=f(x)的方程:(2)已知曲线y=sinx在[0,π]上的弧长为l,试用l表示曲线y=f(x)的弧长s
某湖泊的水量为V1,每年排入湖泊内含污染物A的污水量为V/6,流入湖泊内不含A的水量为V/6,流出湖泊的水量为V/3.已知1999年底湖中A的含量为5m0,超过国家规定指标.为了治理污染,从2000年初起,限定排人湖泊中含A污水的浓度不超过m0/V.问至多
随机试题
Thisis______thelatestexampleofgovernmentinterference.
采血前需对采血袋进行检查,其检查内容包括
A.单个浅表溃疡B.肠壁全层的结核杆菌浸润C.多发浅表溃疡D.肉芽肿形成E.干酪样坏死并组织癌变溃疡型肠结核病理特征是
乳牙继发龋的特点是
男性,9岁,尿少浮肿1天。体检:眼睑部浮肿,血压140/100mmHg,尿蛋白(+),尿红细胞(+++)。该患儿诊断是
下列特征中,属于商誉特征的是()。
国家农业发展银行所承担的任务是()。
日本政府最近发起一项新的运动,()家庭关掉电视,提醒人们不要迷失在小屏幕前,应该多去户外活动。
对于舆情应对,政府不可谓不重视,但“信息不透明,手段不科学,态度不诚恳"却是某大学教授总结出的政府应对舆情危机的三大弊病。例如,面对民生问题中的种种质疑,有关部门的回应却常常让人觉得“雾里看花”。在塑化剂排查中称“抽检的140多份方便面样品,未发现人为添
Nowadays,incominggenerationsreallyrelyonthepowerofthe"Internet"whenitcomestosearchingforinformation.Justtype
最新回复
(
0
)