首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四元线性方程组(1)为又已知齐次线性方程组(2)的通解为k1(0,1,1,0)T+k2(—1,2,2,1)T。 问线性方程组(1),(2)是否有非零公共解?若有,则求出所有非零公共解;若没有,说明理由。
设四元线性方程组(1)为又已知齐次线性方程组(2)的通解为k1(0,1,1,0)T+k2(—1,2,2,1)T。 问线性方程组(1),(2)是否有非零公共解?若有,则求出所有非零公共解;若没有,说明理由。
admin
2019-03-23
41
问题
设四元线性方程组(1)为
又已知齐次线性方程组(2)的通解为k
1
(0,1,1,0)
T
+k
2
(—1,2,2,1)
T
。
问线性方程组(1),(2)是否有非零公共解?若有,则求出所有非零公共解;若没有,说明理由。
选项
答案
令C
1
(0,0,1,0)+C
2
(—1,1,0,1)=k
1
(0,1,1,0)+k
2
(—1,2,2,1)。则有 [*] 那么同解方程组为[*]令k=C
2
,则方程组的解为k(—1,1,1,1)
T
,即方程组(1)、(2)的所有非零公共解是k(—1,1,1,1)
T
,k≠0。
解析
转载请注明原文地址:https://jikaoti.com/ti/yKLRFFFM
0
考研数学二
相关试题推荐
设3阶矩阵A的各行元素之和都为2,又α1=(1,2,2)T和α2=(0,2,1)T分别是(A-E)X=0的(A+E)X=0的解.(1)求A的特征值与特征向量.(2)求矩阵A.
设α,β都是n维列向量时,证明①αβT的特征值为0,0,…,0,βTα.②如果α不是零向量,则α是αβT的特征向量,特征值为βTα.
已知方程组总有解,则λ应满足_________.
设线性方程组为(1)讨论a1,a2,a3,a4取值对解的情况的影响.(2)设a1=a3=k,a2=a4=-k(k≠0),并且(-1,1,1)T和(1,1,-1)T都是解,求此方程组的通解.
设α是n维非零列向量,记A=E-ααT.证明αTα≠1A可逆.
证明:χ-χ2<ln(1+χ)<χ(χ>0).
证明:n>3的非零实方阵A,若它的每个元素等于自己的代数余子式,则A是正交矩阵.
设y=∫0χdt+1,求它的反函数χ=φ(y)的二阶导数及φ〞(1).
求下列函数的导数y′:(Ⅰ)y=arctan:(Ⅱ)y=sinχ.
已知曲线L的方程406求此切线与L(对应于x≤x0的部分)及x轴所围成的平面图形的面积。
随机试题
胃食管反流病最常见的症状是()
在以下关于我国经济体制的描述中,错误的是()。
甲公司2011年至2013年有关业务如下:(1)甲公司与乙公司签订了一份400万元的劳务合同,甲公司为乙公司开发一套系统软件(以下简称项目)。2011年3月2日项目开发工作开始,预计2013年2月26日完工。预计开发完成该项目的总成本为360万元。其他有
根据《支付机构预付卡业务管理办法》规定,个人或单位购买记名预付卡或一次性购买不记名预付卡一定金额以上的,应当使用实名并提供有效身份证件,该金额为()元。
甲公司是增值税一般纳税人,2016年11月经营业务如下:(1)购进油漆、零配件一批,取得增值税专用发票,注明增值税额为8.5万元;进口红木原木一批,取得海关进口增值税专用缴款书,注明增值税额为26万元;向林业生产者收购桦木一批,开具农产品收购凭证,注明
如图,玻璃管内封闭了一段气体,气柱长度为l,管内外水银面高度差为h。若温度保持不变,把玻璃管稍向上提起一段距离,则()。
依法从重从快严厉惩处严重刑事犯罪和经济犯罪是打击的重点和关键,是搞好( )的一记“重拳”。
在党的七届二中全会上,毛泽东提出:“务必使同志们继续地保持谦虚、谨慎、不骄、不躁的作风,务必使同志们继续地保持艰苦奋斗的作风。”其根本原因是()
把握事物的可能性,要注意区分()
有以下程序:#includemain(){FILE*fo;intk,n,a[6]={1,2,3,4,5,6};f0=fopen(“d2.dat”,“W”);fprinff(fo,“%d
最新回复
(
0
)