首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=α2+α3,Aα3=2α2+3α3. 求矩阵B,使A[α1,α2,α3]=[α1,α2,α3]B;
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=α2+α3,Aα3=2α2+3α3. 求矩阵B,使A[α1,α2,α3]=[α1,α2,α3]B;
admin
2018-08-03
10
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量,且满足Aα
1
=α
1
+α
2
+α
3
,Aα
2
=α
2
+α
3
,Aα
3
=2α
2
+3α
3
.
求矩阵B,使A[α
1
,α
2
,α
3
]=[α
1
,α
2
,α
3
]B;
选项
答案
由题设条件,有 A[α
1
,α
2
,α
3
]=[Aα
1
,Aα
2
,Aα
3
]=[α
1
+α
2
+α
3
,2α
2
+α
3
,2α
2
+3α
3
] =[α
1
,α
2
,α
3
][*] 所以,B=[*]
解析
转载请注明原文地址:https://jikaoti.com/ti/xV2RFFFM
0
考研数学一
相关试题推荐
设X和Y分别表示扔n次硬币出现正面和反面的次数,则X,Y的相关系数为().
设A,B分别为m×n及n×s阶矩阵,且AB=O.证明:r(A)+r(B)≤n.
设A=(aij)n×n是非零矩阵,且|A|中每个元素aij与其代数余子式Aij相等.证明:|A|≠0.
设函数f(x)在x=1的某邻域内有定义,且满足|f(x)一2ex|≤(x一1)2,研究函数f(x)在x=1处的可导性.
设函数f(x)(x≥0)可微,且f(x)>0.将曲线y=f(x),x=1,x=a(a>1)及x轴所围成平面图形绕x轴旋转一周得旋转体体积为,求:(1)f(x);(2)f(x)的极值.
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
设A为n阶矩阵,若Ak—1α≠0,而Akα=0.证明:向量组α,Aα,…,Ak—1α线性无关.
设α1,α2,…,αn为n个n维列向量,证明:α1,α2,…,αn线性无关的充分必要条件是
判别下列级数的敛散性(包括绝对收敛或条件收敛):
已知二次型f(x1,x2,x3)=(1一a)+2(1+a)x1x2的秩为2.(Ⅰ)求a的值;(Ⅱ)求正交变换x=Qy,把f(x1,x2,x3)化成标准形;(Ⅲ)求方程f(x1,x2,x3)=0的解.
随机试题
用药剂量过大或药物在体内蓄积过多时发生的危害性反应,称为药物的()。
灭火器结构简单,操作方便轻便灵活,使用面广,是扑救初期火灾的重要消防器材。但不同的火灾种类,应选择不同的灭火器进行灭火,若灭火器选择不当,有可能造成更严重的人身伤亡和财产损失。下列灭火器中适用于扑灭贵重设备和图书档案珍贵资料的是()。
患者女,67岁。大便呈扁状,进行性加重8个月,现出现大便排出困难,无疼痛,无血便。B超提示盆腔肿瘤。术中见盆腔腹膜外、直肠与阴道壁之间10cm×8cm肿块,包膜完整,与直肠有粘连,包膜内有渗出液。病理大体所见:碎组织,大者6cm×4cm×4cm,切面灰黄色
A.成骨细胞B.骨髓细胞C.破骨细胞D.软骨细胞E.组织细胞
最可能的诊断是治疗原则不正确的是
2014年7月1日,甲公司、乙公司和张某签订了《个人最高额抵押协议》,张某将其房屋抵押给乙公司,担保甲公司在一周前所欠乙公司货款300万元,最高债权额400万元,并办理了最高额抵押登记,债权确定期间为2014年7月2日到2015年7月1日。债权确定期间内,
关于自由时差和总时差,下列说法错误的是()。
某图书项目组有4个成员,他们一人负责策划,一人负责组稿,一人负责校对,一人负责质检。现在已知:(1)小林不负责校对也不负责质检;(2)小沫不负责组稿也不负责质检;(3)如果小林不负责组稿,那么小宇就不负责质检;(4)小星既不负责质检也不负责校对。由
TheAlaskapipelinestartsatthefrozenedgeoftheArcticOcean.Itstretchessouthwardacrossthelargestandnorthernmosts
Ifyousitalldayatanofficeandworryaboutitseffectonyourweightandhealth,takeafewbreaks.That’stheadvicefr
最新回复
(
0
)