首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B,C均是3阶矩阵,满足AB=2B,CAT=2C其中 证明:对任何3维向量ξ,A100ξ与ξ必线性相关.
设A,B,C均是3阶矩阵,满足AB=2B,CAT=2C其中 证明:对任何3维向量ξ,A100ξ与ξ必线性相关.
admin
2021-07-27
35
问题
设A,B,C均是3阶矩阵,满足AB=2B,CA
T
=2C其中
证明:对任何3维向量ξ,A
100
ξ与ξ必线性相关.
选项
答案
因Aβ
i
=-2β
i
(i=1,2),故A
100
β
i
=(-2)
100
β
i
=2
100
β
i
(i=1,2).因Aα
1
=2α
1
,故A
100
α
1
=2
100
α
1
.对任意的3维向量ξ,因β
1
,β
2
,α
1
线性无关,ξ可由β
1
,β
2
,α
1
线性表示,且表示法唯一.设ξ=μ
1
β
1
+μ
2
β
2
+μ
3
α
1
,则A
100
ξ=A
100
(μ
1
β
1
+μ
2
β
2
+μ
3
α
1
)=μ
1
A
100
β
1
+μ
2
A
100
β
2
+μ
3
A
100
α
1
=μ
1
2
100
β
1
+μ
2
2
100
β
2
+μ
3
2
100
α
1
=2
100
(μ
1
β
1
+μ
2
β
2
+μ
3
α
1
)=2
100
ξ.得证A
100
ξ和ξ成比例,A
100
ξ和ξ线性相关.
解析
转载请注明原文地址:https://jikaoti.com/ti/w6lRFFFM
0
考研数学二
相关试题推荐
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,设若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y22+y22
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,设证明二次型f对应的矩阵为2ααT+ββT;
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是()
求微分方程y〞+y=χ2+3+cosχ的通解.
设A,B均为n阶正定矩阵,下列各矩阵中不一定是正定矩阵的是()
已知y1=xex+e2x和y2=xex+e-x是二阶常系数非齐次线性微分方程的两个解,则此方程为()
设α0是A的特征向量,则α0不一定是其特征向量的矩阵是
设A为n阶可逆矩阵,λ为A的特征值,则A*的一个特征值为().
设A=有四个线性无关的特征向量,求A的特征值与特征向量,并求A2010.
某五元齐次线性方程组的系数矩阵经初等变换,化为.则自由变量可取为(1)x4,x5.(2)x3,x5.(3)x1,x5.(4)x2,x3.那么正确的共有()
随机试题
求下列函数带佩亚诺型余项的麦克劳林公式:f(x)=arctanx到含x5的项;
玉露凋伤枫树林,_________。(杜甫《秋兴八首》(其一))
脊髓骶节()
A.尖颅B.方颅C.巨颅D.长颅E.变形颅小儿佝偻病的头颅是
下列各项哪些项与外因性不匀称型胎儿宫内发育迟缓无关:
既可用于排除地下水,又可排除地面水的排水设施是()。
企业向投资者宣告发放现金股利,应在宣告时确认为费用。()
社会工作者小莉采用建构主义方法论,对某市温馨家园残障人士康复服务项目进行需求评估研究。下列小莉的做法中,符合建构主义方法论理念的是()。
皮亚杰的研究表明,去集中化是形式运算阶段儿童思维成熟的最大特征。()
Televisionsenablesustoseethingshappenalmostattheexactmoment______.
最新回复
(
0
)