首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
二次型f(x1,x2,x3)=x12+ax22+x32-4x1x2-8x1x3-4x2x3经过正交变换化为标准形5y12+y22-4y32,求: (1)常数a,b; (2)正交变换的矩阵Q.
二次型f(x1,x2,x3)=x12+ax22+x32-4x1x2-8x1x3-4x2x3经过正交变换化为标准形5y12+y22-4y32,求: (1)常数a,b; (2)正交变换的矩阵Q.
admin
2021-11-15
42
问题
二次型f(x
1
,x
2
,x
3
)=x
1
2
+ax
2
2
+x
3
2
-4x
1
x
2
-8x
1
x
3
-4x
2
x
3
经过正交变换化为标准形5y
1
2
+y
2
2
-4y
3
2
,求:
(1)常数a,b;
(2)正交变换的矩阵Q.
选项
答案
[*]
解析
转载请注明原文地址:https://jikaoti.com/ti/w3lRFFFM
0
考研数学二
相关试题推荐
函数f(x)在x=1处可导的充分必要条件是().
设f(x)在[a,b]上连续,且对任意的t∈[0,1]及任意的x1,x2∈[a,b]满足:.证明:.
设A是m×s阶矩阵,B为s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组。
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又且AB=O,求方程组AX=0的通解。
设齐次线性方程组其中ab≠0,n≥2,讨论a,b取何值时,方程组只有零解,有无穷多个解?在有无穷多个解时,求出其通解。
设有方程组AX=0与BX=0,其中A,B都是m×n阶矩阵,下列四个命题:(1)若AX=0的解都是BX=0的解,则r(A)≥r(B)(2)若r(A)≥r(B),则AX=0的解都是BX=0的解(3)若AX=0与BX=0同解,则r(A)=r(B)(4
设A为三阶正交阵,且|A|<0,|B-A|=-4,则|E-ABT|=________.
设a1,a2,Β1,Β2为三维列向量组,且a1,a2与Β1,Β1都线性无关。证明:至少存在一个非零向量可同时由a1,a2与Β1,Β2线性表示。
设二次型f(χ1,χ2,χ3)=χTAχ=3χ12+aχ22+3χ33-4χ1χ2-8χ1χ3-4χ2χ3,其中-2是二次型矩阵A的一个特征值.(Ⅰ)用正交变换将二次型f化为标准形,并写出所用正交变换;(Ⅱ)如果A*+kE是正定矩阵,
随机试题
利润分配的基本原则有()
临床药师的职责不包括
根据民事诉讼法基础理论及相关规定,下列选项中对于反诉说法错误的是:()
估价报告书中说明的()限定了其用途。
FIDIC执行委员代表FIDIC在全球范围内保持并提升形象的工作内容包括()。
工程预付备料款为()万元。5月份应结算工程款为()万元。
《企业财务会计报告条例》对财务会计报告的编制依据、编制要求、提供对象作出了相关规定。()
ST股票在一个交易日内交易价格相对上一个交易日收市价格的涨跌幅不得超过()。
学习者因榜样受到强化而使自己也间接受到强化,我们称这种强化为()
读者(借书证号C,姓名C,单位C,性别L,职称C,联系电话C)借阅(借书证号C,总编号C,借书日期D)统计每个读者借阅图书的次数,若没有借阅过,则显示次数为0,正确的SQL语句是:
最新回复
(
0
)