首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组 其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.
设齐次线性方程组 其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.
admin
2021-01-25
39
问题
设齐次线性方程组
其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.
选项
答案
方程组的系数行列式 [*] =[a+(n-1)b](a-b)
n-1
(1)当a≠b且a≠(1-n)b时,方程组仅有零解. (2)当a=b时,对系数矩阵A作行初等变换,有 [*] 原方程组的同解方程组为 x
1
+x
2
+…+x
n
=0 方程组的基础解系为 α
1
=(-1,1,0,…,0)
T
,α
2
=(-1,0,1,…,0)
T
,…,α
n-1
=(-1,0,0,…,1)
T
,方程组的全部解为 x=c
1
α
1
+c
2
α
2
+…+c
n-1
α
n-1
(c
1
,c
2
,…,c
n-1
为任意常数). (3)当a=(1-n)b时,对系数矩阵A作行初等变换,有 [*] 原方程组的同解方程组为 [*] 其基础解系为β=(1,1,…,1)
T
.方程组的全部解是x=cβ(c为任意常数).
解析
转载请注明原文地址:https://jikaoti.com/ti/vwaRFFFM
0
考研数学三
相关试题推荐
证明:∫01dx∫01(xy)xydy=∫01xxdx.
假设二维随机变量(X,Y)在矩形区域G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布.记求:U和V的联合分布;
求函数y=的导数.
[2016年]设二维随机变量(X,Y)在区域D={(x,y)|0<x<1,}上服从均匀分布,令写出(X,Y)的概率密度;
[2014年]设随机变量X,Y的概率分布相同,X的概率分布为且X与Y的相关系数求P{X+Y≤1}.
(99年)设矩阵A=且|A|=-1,又设A的伴随矩阵A*有特征值λ0,属于λ0的特征向量为α=(-1,-1,1)T.求a,b,c及λ0的值.
(95年)将函数y=ln(1-χ-2χ2)展成χ的幂级数,并指出其收敛区间.
[2003年]已知齐次线性方程组其中试讨论a1,a2,…,an和b满足何种关系时,(1)方程组仅有零解;(2)方程组有非零解.在有非零解时,求此方程组的一个基础解系.
(1999年)设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,试证:(I)存在,使f(η)=η;(Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)一λ[f(ξ)一ξ]=1。
(91年)试证明函数f(χ)=在区间(0,+∞)内单调增加.
随机试题
Doctorsalreadyknowthatpeoplewhosmokecandamagetheirhearing.ThelateststudyinthejournalTobaccoControl,【C1】_______
Wearegettingtiredof______.
漏出性出血多发生于
A.连朴饮B.八正散C.茵陈蒿汤D.三仁汤湿热霍乱首选
公民甲离家出走,一直无音讯逾四年。经申请,法院对甲作出宣告死亡的判决。甲子乙与甲妻丙以法定继承人的身份将甲的财产分割,转归各自所有。乙又将分得的一条项链赠送给了女友;丙也改嫁他人,但不久两人又离婚。在宣告死亡期间。甲在外地将放在原家中的一台冰箱(系婚前财产
甲公司2007年度至2012年度发生的与一栋办公楼有关的业务资料如下:(1)2007年1月1日,甲公司与乙公司签订合同,委托乙公司为其建造一栋办公楼。合同约定,该办公楼的总造价为5000万元,建造期为12个月,甲公司于2007年1月1日向乙公司预付20
某商品原价若干元,现在降价3元,购买人数增加1/2,收入增加20%,那么商品原价多少元?()
巴洛克时期最重要的器乐体裁之—奏鸣曲分________奏鸣曲和独奏奏鸣曲两类。
诉讼:法庭
改造客观世界包括()
最新回复
(
0
)