首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1999年)设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,试证: (I)存在,使f(η)=η; (Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)一λ[f(ξ)一ξ]=1。
(1999年)设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,试证: (I)存在,使f(η)=η; (Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)一λ[f(ξ)一ξ]=1。
admin
2019-05-11
50
问题
(1999年)设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,
试证:
(I)存在
,使f(η)=η;
(Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)一λ[f(ξ)一ξ]=1。
选项
答案
(I)构造函数F(x)=f(x)一x,则F(x)在区间[0,1]上连续,在(0,1)内可导,且[*],F(1)=f(1)一1=0—1=一1<0, 所以由介值定理得,存在一点[*],使得F(η)=f(η)一η=0,即存在一点[*]使得f(η)=η,原命题得证。 (Ⅱ)令 f’(x)一λ[f(x)一x]一1=0, 解微分方程得f(x)=x+Ce
λx
,即e
-λx
(f(x)一x)=C,令 G(x)=e
-λx
[f(x)一x]。 因为 G(0)=e
0
(f(0)一0)=0,G(η)=e
-λη
(f(η)一η)=0, 所以,在(0,η)上由罗尔定理知,必然存在点ξ∈(0,η),使得G’(ξ)=0,即 G’(ξ)=一λe
-λξ
(f(ξ)一ξ)+e
-λξ
(f’(ξ)一1) =e
-λξ
(一λf(ξ)+λξ+f’(ξ)一1)=0, 即 f’(ξ)一λ[f(ξ)一ξ]=1。
解析
转载请注明原文地址:https://jikaoti.com/ti/1knRFFFM
0
考研数学三
相关试题推荐
假设二维随机变量(X1,X2)的协方差矩阵为∑=,其中σij=Cov(Xi,Xj)(i,j=1,2),如果X1与X2的相关系数为p,那么行列式|∑|=0的充分必要条件是()
设X1,X2,…,Xn(n>2)是来自总体X~N(0,1)的简单随机样本,记Yi=Xi-(i=1,2,…,n).求:(1)D(Yi);(2)Cov(Y1,Yn).
设矩阵A=(1)若A有一个特征值为3,求a;(2)求可逆矩阵P,使得PTA2P为对角矩阵.
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数.(1)将x=x(y)所满足的微分方程=0变换为y=y(x)所满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解.
设二维随机变量(X,Y)的联合分布律为则在Y=1的条件下求随机变量X的条件概率分布.
当x∈[0,1]时,由[*]积分得[*]而[*]由夹逼定理得[*]
(1)设求a,b的值.(2)确定常数a,b,使得(3)设b>0,且求b.
(2002年)设随机变量X和Y都服从标准正态分布,则()
设函数z=f(u),方程u=φ(u)+∫yxP(t)dt确定u为x,y的函数,其中f(u),φ(u)可微,P(t),φ’(u)连续,且φ’(u)≠1,求
[2002年]设函数f(x)在[a,b]上有定义,在(a,b)内可导,则().
随机试题
下列属于经验估计预测法的有()
患者,女,52岁。绝经3年,近1个月自觉腹胀、腹痛,腹部出现肿块。妇科检查:外阴、阴道无萎缩,宫颈光滑,子宫前位,正常大小,右侧附件区10cm×5cm×3cm肿物,左侧附件区8cm×3cm×2cm肿物,半实质性,囊壁有乳头生长,囊液混浊,呈血性。有腹水,全
Ⅱ型糖尿病血糖升高的主要原因不包括的是
紧张度较低的脉象是
营销思想是一种()的经营哲学。
下列属于行政诉讼受案范围的是()。
某贸易公司甲从国外购进200吨新闻纸,委托某船运公司乙运往中国境内。一日,乙船运公司的运货船载着该船船员私自在国外购买的手机、电视机等电器,在中国某市附近海域进行走私交易时,被中国某海关抓获。该海关做出决定,将包括甲公司200吨新闻纸在内的船上所有物品予以
A、4B、5C、6D、7C将T2还原为森林T1,其中有4棵树:C、D、F、G,I和J是叶子结点。
Municipalbansonsmokinginrestaurantsandbarsarehighlycontroversial,buthistoryshowstheycanalsobehighlyeffective.
ThefirstperformanceofTchaikovsky’sTheNutcracker,inSt.Petersburgin1892,wasaflop.Wroteonecriticthenextday:"Fo
最新回复
(
0
)