(2011年)设函数f(χ),g(χ)均有二阶连续导数,满足f(0)>0,g(0)<0,且f′(0)=g′(0)=0,则函数z=f(χ)g(y)在点(0,0)处取得极小值的一个充分条件是 【 】

admin2021-01-19  52

问题 (2011年)设函数f(χ),g(χ)均有二阶连续导数,满足f(0)>0,g(0)<0,且f′(0)=g′(0)=0,则函数z=f(χ)g(y)在点(0,0)处取得极小值的一个充分条件是    【    】

选项 A、f〞(0)<0,g〞(0)>0.
B、f〞(0)<0,g〞(0)<0.
C、f〞(0)>0,g〞(0)>0.
D、f〞(0)>0,g〞(0)<0.

答案A

解析
    则AC=B2>0
    故z=f(χ)g(y)在(0,0)点取极小值.应选A.
转载请注明原文地址:https://jikaoti.com/ti/vWARFFFM
0

最新回复(0)