首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列方程的通解: (Ⅰ)y’’3y’=2-6x; (Ⅱ)y’’+y=ccosxcos2x.
求下列方程的通解: (Ⅰ)y’’3y’=2-6x; (Ⅱ)y’’+y=ccosxcos2x.
admin
2019-06-28
41
问题
求下列方程的通解:
(Ⅰ)y’’3y’=2-6x;
(Ⅱ)y’’+y=ccosxcos2x.
选项
答案
(Ⅰ)先求相应齐次方程的通解,由于其特征方程为λ
2
-3λ=λ(λ-3)=0,所以通解为 [*]=C
1
+C
2
e
3x
. 再求非齐次方程的特解,由于其自由项为一次多项式,而且0是特征方程的单根,所以特解应具有形式y
*
(x)=x(Ax+B),代入原方程,得 [y
*
(x)]’’-3[y
*
(x)]’=2A-3(2Ax+B)=-6Ax+2A-3B=2-6x. 比较方程两端的系数,得[*]解得A=1,B=0,即特解为y
*
(x)=x
2
.从而,原方程的通解为y(x)=x
2
+C
1
+C
2
e
3x
,其中C
1
,C
2
为任意常数. (Ⅱ)由于cosxcos2x=[*](cosx+cos3x),根据线性微分方程的叠加原理,可以分别求出y’’+y=[*]cosx与y’’+y=[*]cos3x的特解y
1
*
(x)与y
2
*
(x),相加就是原方程的特解. 由于相应齐次方程的特征方程为λ
2
+1=0,特征根为±i,所以其通解应为C
1
cosx+C
2
sinx;同时y’’+y=[*]cosx的特解应具形式:y
1
*
(x)=Axcosx+Bxsinx,代入原方程,可求得A=0,B=[*].y
1
*
(x)=[*]sinx. 另外,由于3i不是特征根,所以另一方程的特解应具形式y
2
*
(x)=Ccos3x+Dsin3x,代入原方程,可得C=[*],D=0.这样,即得所解方程的通解为y(x)=[*]cos3x+C
1
cosx+C
2
sinx,其中C
1
,C
2
为任意常数.
解析
转载请注明原文地址:https://jikaoti.com/ti/jsLRFFFM
0
考研数学二
相关试题推荐
2
设α=(1,一1,a)T是的伴随矩阵A*的特征向量,其中r(AT)=3,则a=___________。
已知α1=(a,a,a)T,α2=(-a,a,b)T,α3=(-a,-a,-b)T线性相关,则a,b满足关系式_______.
设z=xf(x+y)+g(xy,x2+y2),其中f,g分别阶连续可导和二阶连续可偏导,则=__________
设向量组线性无关,则a,b,c必满足关系式_______.
曲线y=的斜渐近线方程为_______。
设A是3阶矩阵,且各行元素之和都是5,则A必有特征向量________.
设y=f(x)有二阶连续导数,且满足xy"+3xy’2=1-e-x.(1)若f(x)在x=c(c≠0)处取得极值,证明f(c)是极小值.(2)若f(x)在x=0处取得极值,问f(0)是极小值还是极大值?(3)若f(0)=f’(0)=0,证
求方程y’’+2my’+n2y=0的通解;又设y=y(x)是满足初始条件y(0)=a,y’(0)=b的特解,求∫0+∞y(x)dx,其中m>n>0,a,b为常数.
(08年)设函数y=y(x)由参数方程确定,其中x(t)是初值问题的解,求
随机试题
一组样本数据为:10.0,10.1,9.8,10.2,9.9,则该样本组平均值与极差分别为________。
视频信号的数字化过程中,亮度信号的取样频率可以比色度信号的取样频率低一些,以减少数字视频的数据量。()
叶酸类似物可以干扰
蛔虫产卵量大,粪检蛔虫卵最常用方法为
某技术方案的基准收益率为10%,内部收益率为15%,则该技术方案()。
作为一名警察。请你谈谈对于海珠大桥“跳桥秀事件”的看法。
传说老子遇到一位年逾百岁的老翁,老翁得意地说:“我从年少到现在,一直是游手好闲地轻松度日。我的同龄人辛苦一生却早已作古。现在我是否可以嘲笑他们忙碌一生,只是给自己换来一个早逝的结果呢?”老子拿了一块砖头和一块石头放在老翁面前说:“如果只能选择其一,您是要砖
设函数f连续,区域D={(x,y)|t2≤x2+y2≤4t2,x≥0,y≥0},F(t)=,则F’(t)=().
某人向同一目标独立重复射击,每次射击命中目标的概率为p(0<p<1),则此人第4次射击恰好第2次命中目标的概率为()
A、Awaitress.B、Acashier.C、Asecurity.D、Asecretary.A男士向女士要一份伏特加酒和橙汁,女士把东西给了他并收取费用。因此,女士应当是服务员,本题选A。
最新回复
(
0
)