首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知β1,β2是AX=b的两个不同的解,α1,α2是相应的齐次方程组AX=0的基础解系,k1,k2是任意常数,则AX=b的通解是 ( )
已知β1,β2是AX=b的两个不同的解,α1,α2是相应的齐次方程组AX=0的基础解系,k1,k2是任意常数,则AX=b的通解是 ( )
admin
2016-09-19
39
问题
已知β
1
,β
2
是AX=b的两个不同的解,α
1
,α
2
是相应的齐次方程组AX=0的基础解系,k
1
,k
2
是任意常数,则AX=b的通解是 ( )
选项
A、
B、
C、
D、
答案
B
解析
(A),(C)中没有非齐次特解,(D)中两个齐次解α
1
与β
1
-β
2
是否线性无关未知,而(B)中因α
1
,α
2
是基础解系,故α
1
,α
1
-α
2
仍是基础解系,
仍是特解.
转载请注明原文地址:https://jikaoti.com/ti/uzxRFFFM
0
考研数学三
相关试题推荐
某公共汽车站每隔10min有一辆汽车到达,一位乘客到达汽车站的时间是任意的,求他等候时间不超过3min的概率.
设A,B是同阶正定矩阵,则下列命题错误的是().
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
求下列隐函数的指定偏导数:
设函数y=f(x)具有二阶导数,且f’(x)>0,f(x)>0,△x为自变量x在点x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(E为n阶单位矩阵).
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTB=0,记n阶矩阵A=αβT,求:(I)A2;(II)矩阵A的特征值和特征向量.
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是
设A是任一n(n≥3)阶方阵,A*是其伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向节,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
随机试题
A.6寸B.8寸C.9寸D.12寸E.13寸`
A.阿米替林B.吗氯贝胺C.氟西汀D.文拉法辛E.米氮平属于选择性5-羟色胺再摄取抑制剂的是()。
某甲走私淫秽,录像带后,又多次在国内组织播放淫秽录像带。某甲的行为构成( )。
引进设备合同供货方()。
背景资料某新建中型泵站开工前,项目部根据施工合同,编制了泵站建筑安装工程内容及工程量表,绘制了网络进度计划(如图1所示),并提交监理单位批准。工程如期开工,施工中发生如下事件:事件1:在第4个月末检查进度时,A工作和B工作已完成,C工作完成43.5
关于晋升与调动的陈述,正确的是()。
下列各项中,按照有关规定可以不必计算缴纳印花税的有()。
在Internet上查询信息最有效的工具是()。
“以君之力,曾不能损魁父之丘,如太行王屋何?”下列选项中的“以”与这句话中的“以”意义及用法相同的是:
概括“资料1~3”的主要内容并作简要分析。要求:准确、全面、有条理。字数不超过350字。给定资料资料1自2008年全球金融危机以来,我国的出口形势面临巨大的压力,2009—2012年,我国的贸易顺差占当年外贸进出口总值的比例分别为5.9%、6.2%
最新回复
(
0
)