用泰勒公式确定下列无穷小量当χ→0时关于χ的无穷小阶数: (Ⅰ) (Ⅱ)∫0χ(et-1-t)2dt.

admin2016-10-21  39

问题 用泰勒公式确定下列无穷小量当χ→0时关于χ的无穷小阶数:
    (Ⅰ)
    (Ⅱ)∫0χ(et-1-t)2dt.

选项

答案[*] 因此当χ→0时[*]是χ的二阶无穷小量. (Ⅱ)因et-1-t=[*]t2+o(t2),从而(et-1-t)2=[*]t4=o(t4),代入得 ∫0χ(et-1-t)2dt=[*]χ5+o(χ5), 因此χ→0时∫0χ(et-1-t)2dt是χ的五阶无穷小量.

解析
转载请注明原文地址:https://jikaoti.com/ti/uxzRFFFM
0

最新回复(0)