首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X和Y相互独立,且X~N(1,2),Y~N(一3,4),则随机变量Z=一2X+3Y+5的概率密度为f(z)=_____.
设随机变量X和Y相互独立,且X~N(1,2),Y~N(一3,4),则随机变量Z=一2X+3Y+5的概率密度为f(z)=_____.
admin
2017-08-07
34
问题
设随机变量X和Y相互独立,且X~N(1,2),Y~N(一3,4),则随机变量Z=一2X+3Y+5的概率密度为f(z)=_____.
选项
答案
[*]
解析
因为两个相互独立的正态随机变量的线性函数仍然服从正态分布,所以Z=一2X+3Y+5服从正态分布.要求f(z)=
.则需确定参数μ与σ的值.又E(Z)=μ,D(Z)=σ
2
,因此归结为求E(Z)与D(Z).根据数学期望和方差的性质及
E(X)=1, D(X)=2, E(Y)=一3, D(Y)=4,
可得 E(Z)=E(一2X+3Y+5)=一2E(X)+3E(Y)+5
=(一2)×1+3×(一3)+5 =一6,
D(Z)=D(一2X+3Y+5)=(一2)
2
D(X)+3
2
D(Y)=4×2+9×4=44.
因此Z的概率密度为
转载请注明原文地址:https://jikaoti.com/ti/uZVRFFFM
0
考研数学一
相关试题推荐
设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明:(Ⅰ)存在η∈(a,b),使得f(η)=g(η);(Ⅱ)存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ
(1998年试题,九)设y=f(x)是区间[0,1]上的任一非负连续函数.又设f(x)在区间(0,1)内可导,且证明(1)中的x0是唯一的.
(2011年试题,三)设随机变量X与y的概率分布本别为且P(X2=Y2)=1求Z=XY的概率分布;
(1997年试题,九)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是.没X为途中遇到红灯的次数,求随机变最X的分布律、分布函数和数学期望.
(2006年试题,21)设3阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=O的两个解.求A的特征值与特征向量;
(2008年试题,20)设α,β为三维列向量,矩阵A=ααT+ββT,其中αT为α的转置,βT为β的转置.证明:rA≤2;
设f(x,y),φ(x,y)均有连续偏导数,点M0(x0,y0)是函数z=f(x,y)在条件φ(x,y)=0下的极值点,又φ’(x0,y0)≠0,求证:曲面z=f(x,y)与柱面φ(x,y)=0的交线F在点P0(z0,y0,z0)(z0=f(x0,y0
设二次型xTAx=x12+4x22+x32+2ax3x2+2bx1x3+2cx2x3,矩阵A满足AB=0,其中求(A一3E)b.
假设X1,X2,…,Xn为来自总体X的简单随机样本,已知E(Xk)=ak(k=1,2,3,4),证明:当n充分大时,随机变量Zn=近似服从正态分布,并指出其分布参数.
已知矩阵,试判断矩阵A和B否相似,若相似则求出可逆矩阵P,使P-1AP=B,若不相似则说明理由.
随机试题
氮质血症
对糖代谢无影响的激素是
TAT是一种
当表面相对不透水的边坡被水淹没时,如边坡滑动面(软弱结构面)的倾角θ小于坡角α时,则静水压力对边坡稳定的影响符合下列哪一选项?()
某工业园总体电缆工程中电缆沟的结构如图6.Ⅲ所示。计算该电缆工程的相关定额见表6.Ⅲ.1。人工单价为58元/工日,管理费和利润分别按人工费的65%和35%计取。问题:根据图6.Ⅲ和《建设工程工程量清单计价规范》(GB50500—201
甲公司是小规模纳税人,2016年2月2日向A银行借款1000万元,约定8个月后归还,按季度支付利息,年利率为5%。下列各项会计处理中正确的有()。
对广告策划主管的特殊职业要求包括()。
试图将记忆系统和记忆过程的概念统一到一个更综合的框架中的记忆理论是()
程序中的注释可以增加程序的()。
Thegeneralmanagerhaspromisedasalaryincreaseof10%forsome(employ)______thisyear.
最新回复
(
0
)