已知矩阵,试判断矩阵A和B否相似,若相似则求出可逆矩阵P,使P-1AP=B,若不相似则说明理由.

admin2015-05-07  41

问题 已知矩阵,试判断矩阵A和B否相似,若相似则求出可逆矩阵P,使P-1AP=B,若不相似则说明理由.

选项

答案由矩阵A的特征多项式 [*] 得到矩阵A的特征值是λ1=3,λ23=-1. 由矩阵B的特征多项式 [*] 得到矩阵B的特征值也是λ1=3,λ23=-1. 当λ=-1时,由秩 [*] 知(-E-A)x=0有2个线性无关的解,即λ=-1时矩阵A有2个线性无关的特征向量,矩阵A可以相似对角化. 而(-E-B)x=0只有1个线性无关的解,即λ=-1时矩阵B只有1个线性无关的特征向量,矩阵B不能相似对角化.因此矩阵A和B不相似.

解析
转载请注明原文地址:https://jikaoti.com/ti/9pcRFFFM
0

最新回复(0)