首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1999年)设函数y(x)(x≥0)二阶可导,且y′(x)>0,y(0)=1。过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并
(1999年)设函数y(x)(x≥0)二阶可导,且y′(x)>0,y(0)=1。过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并
admin
2019-03-07
18
问题
(1999年)设函数y(x)(x≥0)二阶可导,且y′(x)>0,y(0)=1。过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S
1
,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S
2
,并设2S
1
一S
2
恒为1,求此曲线y=y(x)的方程。
选项
答案
如图,曲线y=y(x)上点P(x,y)处的切线方程为Y—y(x)=y′(x)(X—x),所以切线与x轴的交点为[*] [*] 由于y′(x)>0,y(0)=1,因此y(x)>0(x>0),于是 [*] 根据题设2S
1
一S
2
=1,即[*]两边对x求导并化简得yy"=(y′)
2
,这是可降阶得二阶常微分方程,令p=y′,则 [*] 则上述方程可化为[*]分离变量得[*]解得p=C
1
y,即[*]从而有 y=e
C
1
x+C
2
根据y(0)=1,y′(0)=1,可得C
1
=1,C
2
=0,故所求曲线得方程为y=e
x
。
解析
转载请注明原文地址:https://jikaoti.com/ti/uSoRFFFM
0
考研数学一
相关试题推荐
设当x→x0时,f(x)不是无穷大,则下述结论正确的是()
函数f(x)=的间断点()
设α1,α2,…,αn是n个n维的线性无关向量组,an+1=k1α1+k2α2+…+knαn,其中k1,k2,…,kn全不为零。证明:α1,α2,…,αn,αn+1中任意n个向量线性无关。
已知A=(α1,α2,α3,α4)是四阶矩阵,α1,α2,α3,α4是四维列向量,若方程组Ax=β的通解是(1,2,2,1)T+k(1,-2,4,0)T,又B=(α3,α2,α1,β-α4),求方程组Bx=3α1+5α2-α3的通解。
设矩阵A是秩为2的四阶矩阵,又α1,α2,α3是线性方程组Ax=b的解,且α1+α2-α3=(2,0,-5,4)T,α2+2α3=(3,12,3,3)T,α3-2α1=(2,4,1,-2)T,则方程组Ax=b的通解x=()
(2015年)设Ω是由平面x+y+z=1与三个坐标平面所围成的空间区域,则
(2006年)设f(x,y)为连续函数,则等于()
(2003年)曲面z=z2+y2与平面2x+4y—z=0平行的切平面的方程是_____________。
设二维随机变量(X,Y)服从正态分布N(μ,μ;σ2,σ2;0),则E(XY2)=________。
设总体X的概率分布为其中参数θ∈(0,1)未知,以Ni表示来自总体X的简单随机样本(样本容量为n)中等于i的个数(i=1,2,3).试求常数a1,a2,a3,使aiNi为θ的无偏估计量,并求T的方差.
随机试题
补扣在境外已缴纳的个人所得税的最长期限不超过()年。[2010年11月二级真题]
什么是内燃机活塞行程?
利率互换的主要作用有()。
箱子中有编号为1-10的lO个小球,每次从中抽出1个记下编号后放回,如是重复3次,则3次记下的小球编号乘积是5的倍数的概率是多少?()
下列文化成就出现于汉代的有()。
正确发挥意识能动作用的客观前提是()。(常考)
阅读下文。完成问题。文化,尤其是对一个民族的特点和历史走向产生过明显影响的有形文化或“雅文化”,是一种有机的活体,有她或她们的历史生命和灵魂。说一个这种意义上的文化还存在不存在,主要看她是否还活在某个民族或社团的现实生活中。具体的标志就是要看:(1)这
做一件事,往往有利也有弊,只有利而无弊的事情几乎是没有的。《淮南子.人间训》云:“众人皆知利利而病病,唯圣人知病之为利,利之为病也。”看来古人已经注意到利弊的辩证关系。下列表述符合文意的是()。
WriteonANSWERSHEETTHREEanoteofabout50-60wordsbasedonthefollowingsituation:You’velearnedthatyourfriendJimm
TheChallengesandPotentialofNewEducationalTechnologyI.Criticismsofcomputersandmultimediat
最新回复
(
0
)