首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知(X,Y)的联合密度函数f(x,y)=g(x)h(y),其中g(x)≥0,h(y)≥0,a=∫-∞+∞g(x)dx,b=∫-∞+∞h(y)dy存在且不为零,则X与Y独立,其密度函数fX(x),fY(y)分别为
已知(X,Y)的联合密度函数f(x,y)=g(x)h(y),其中g(x)≥0,h(y)≥0,a=∫-∞+∞g(x)dx,b=∫-∞+∞h(y)dy存在且不为零,则X与Y独立,其密度函数fX(x),fY(y)分别为
admin
2019-07-12
33
问题
已知(X,Y)的联合密度函数f(x,y)=g(x)h(y),其中g(x)≥0,h(y)≥0,a=∫
-∞
+∞
g(x)dx,b=∫
-∞
+∞
h(y)dy存在且不为零,则X与Y独立,其密度函数f
X
(x),f
Y
(y)分别为
选项
A、f
X
(x)=g(x),f
Y
(y)=h(y).
B、f
X
(x)=ag(x),f
Y
(y)=bh(y).
C、f
X
(x)=bg(x),f
Y
(y)=ah(y).
D、f
X
(x)=g(x),f
Y
(y)=abh(y).
答案
C
解析
显然我们需要通过联合密度函数计算边缘密度函数来确定正确选项,由于
f
X
(x)=∫
-∞
+∞
f(x,y)dy=∫
-∞
+∞
g(x)h(y)dy=g(x)∫
-∞
+∞
h(y)dy=bg(x),
f
Y
(y)=∫
-∞
+∞
g(x)h(y)dx=ah(y),
又1=∫
-∞
+∞
∫
-∞
+∞
f(x,y)dxdy=∫
-∞
+∞
g(x)dx∫
-∞
+∞
h(y)dy=ab,
所以f(x,y)=g(x)h(y)=abg(x)h(y)=bg(x)ah(y)=f
X
(x)f
Y
(y),X与Y独立,故选(C).
转载请注明原文地址:https://jikaoti.com/ti/uLnRFFFM
0
考研数学三
相关试题推荐
设f(x)=g(x)=∫01-cosxsint2dt,则x→0时f(x)是g(x)的
(1)若A可逆且A~B,证明:A*~B*;(2)若A~B,证明:存在可逆矩阵P,使得AP~BP.
设f(x)为偶函数,且满足f’(x)+2f(x)-3∫0xf(t-x)dt=-3x+2,求f(x).
设f(x)在x=a处二阶可导,则等于().
设随机变量X,Y相互独立,且X~P(1),Y~P(2),求P(max{X,Y}≠0)及P(min{X,Y}≠0).
设f(x)在[0,1]上二阶可导,且f’’(x)<0.证明:∫01f(x2)dx≤
设随机变量X1,X2,…,Xm+n(m<n)独立同分布,其方差为σ2,令求:D(Y),D(Z);
求下列极限:
关于二次型f(x1,x2,x3)=,下列说法正确的是()
(1988年)设级数绝对收敛.
随机试题
多巴胺舒张肾血管是由于()
甲因遭受强奸住院治疗一个多月,出院后仍长期精神恍惚,后经多方医治才恢复正常。在诉讼过程中,甲提起附带民事诉讼。下列哪些赔偿要求具有法律依据?()(2006年司考,卷二,第72题)
流水施工的表达方式除网络图外,主要还有横道图和垂直图。这两种图形均可以清楚地表达出( )。
某商品混凝土公司一次性购进一批散装水泥,需进行复试,则每一批量不得超过()t。
某炒货厂为了便于联系业务,聘请某果品公司招待所干部马某当业务顾问并付津贴。马某背着公司领导私自以公司的名义与炒货厂签订了一份购销傻子瓜子合同,并采取欺骗手段偷盖了公司的印章。合同签订后,马某又拿着合同到公司下属单位,要求其下属单位按合同接受炒货厂的货物。其
学生学习“路程=速度×时间”,这种学习属于()。
公安机关在办理刑事案件中,要把主要精力放在()上。
下列各组词语中,没有错别字的一组是()
左边给定的是纸盒的外表面,下列哪一项能由它折叠而成?
A、Becausetelevisionischeapertopurchase.B、Becausepeoplecouldseethesceneandthefiguresinmovements.C、Becausetelevi
最新回复
(
0
)