设f(x)连续且=2,φ(x)=∫01f(xt)dt,求φ’(x)并讨论φ’(x)的连续性.

admin2018-06-27  23

问题 设f(x)连续且=2,φ(x)=∫01f(xt)dt,求φ’(x)并讨论φ’(x)的连续性.

选项

答案φ(x)的表达式中,积分号内含参变量x,通过变量替换转化成变限积分. x≠0时,φ(x)=[*]∫01f(xt)d(xt)[*]∫0xf(s)ds;x=0时,φ(0)=∫01f(0)dt=f(0). 由f(x)在x=0连续及 [*] 因此 [*] 求φ’(x)即求这个分段函数的导数,x≠0时与变限积分求导有关,x=0时可按定义求导. [*] 因此 [*] 最后考察φ’(x)的连续性.显然,x≠0时φ’(x)连续,又 [*] 即φ’(x)在x=0也连续,因此φ’(x)处处连续.

解析
转载请注明原文地址:https://jikaoti.com/ti/rpdRFFFM
0

最新回复(0)