首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=2α1+α2-α3,Aα2=α1+2α2+α3, Aα3=-α1+α2+2α3. 计算行列式|A+E|;
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=2α1+α2-α3,Aα2=α1+2α2+α3, Aα3=-α1+α2+2α3. 计算行列式|A+E|;
admin
2017-06-14
35
问题
设A为三阶矩阵,α
1
,α
2
,α
3
是线性无关的三维列向量,且满足Aα
1
=2α
1
+α
2
-α
3
,Aα
2
=α
1
+2α
2
+α
3
, Aα
3
=-α
1
+α
2
+2α
3
.
计算行列式|A+E|;
选项
答案
由题设,有A(α
1
,α
2
,α
3
)= [*] 令P
1
=[α
1
,α
2
,α
3
],则有 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/r0wRFFFM
0
考研数学一
相关试题推荐
设随机变量X服从正态分布N(μ,σ2)(σ>0),且二次方程y2+4y+X=0无实根的概率为1/2,则μ=___________.
已知3阶矩阵A的第一行是(a,6,c),a,b,c不全为零,矩阵(k为常数),且AB=0,求线性方程组Ax=0的通解.
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.验证α1是矩阵曰的特征向量,并求B的全部特征值的特征向量;
设向量α=(α1,α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.矩阵A的特征值和特征向量.
若3维列向量α,β满足αTβ=2,其中αT为α为转置,则矩阵βαT的非零特征值为
一电子仪器由两个部件构成,以X和Y分别表示两个部件的寿命(单位:千小时),已知X和Y的联合分布函数为F(x,y)=(Ⅰ)X和Y是否独立?(Ⅱ)求两个部件的寿命都超过100小时的概率a.
设A是n阶正定矩阵,E是n阶单位阵,证明A+E的行列式大于1.
(2010年试题,17)(I)比较的大小,说明理由.(Ⅱ)设求极限
(2000年试题,一)设两个相互独立的事件A和B都不发生的概率为,A发生B不发生的概率与B发生A不发生的概率相等,则P(A)=_____________.
设函数y=y(x)由方程ylny-x+y=0确定,判断曲线y=y(x)在点(1,1)附近的凹凸性.
随机试题
历史上第一个早期“劳工法规”颁布于()
患者,男,55岁。右侧肢体偏瘫伴失语、面肌麻痹6h,CT平扫示颅脑未见异常。该时期下列哪种检查方法显示病变敏感
A.经皮肤传播B.经呼吸道传播C.经生殖道传播D.经消化道传播E.经吸血昆虫传播马媾疫锥虫病的主要传播途径是
技术作为生产要素的收入可分为()三个层次。
如果合同的当事人不履行或者履行的义务不符合约定,就一定要承担违约责任。( )
下列人员中能够成为妨害公务罪侵犯的对象的是()。
英国为了对抗法国主导的欧共体的发展,在20世纪60年代提出的对策是()。
甲、乙、丙共有的牲口致他人损害,甲向受害人支付了全部赔偿金后,()。
设直线y=kχ与曲线y=所围平面图形为D1,它们与直线χ=1围成平面图形为D2.(1)求k,使得D1与D2分别绕χ轴旋转一周成旋转体体积V1与V2之和最小,并求最小值;(2)求此时的D1+D2.
Inresponsetoscandalsrockingthestudentloanindustry,theHousehasquicklypassedreformlegislationtorequiremorediscl
最新回复
(
0
)