已知= 2x +y+1,=x+2y+3,u(0,0)=1,求u(x,y)及u(x,y)的极值,并问此极值是极大值还是极小值?说明理由。

admin2017-12-29  16

问题 已知= 2x +y+1,=x+2y+3,u(0,0)=1,求u(x,y)及u(x,y)的极值,并问此极值是极大值还是极小值?说明理由。

选项

答案由[*]= 2x +y+1,有u(x,y)=x2+xy+x+φ(y),再结合[*]=x+2y+3,有x+φ’(y)=x+2y+3,得 φ’(y)=2y +3,φ(y)=y2+3y+C。 于是 u(x,y)=x2+xy+x+y2+3y+C。 又由u(0,0)=1得C=1,因此u(x,y)=x2+xy+y2+x+3y +1。 [*]

解析
转载请注明原文地址:https://jikaoti.com/ti/qyKRFFFM
0

最新回复(0)