设有二阶连续导数的函数y=f(x)>0,f(2)=1/2,f’(2)=0,且∫01x2f’’(2x)dx=0,则y=f(x)与x=0,x=2所围平面图形的面积S=________

admin2022-09-14  39

问题 设有二阶连续导数的函数y=f(x)>0,f(2)=1/2,f’(2)=0,且∫01x2f’’(2x)dx=0,则y=f(x)与x=0,x=2所围平面图形的面积S=________

选项

答案1

解析 由于
01x2f’’(2x)dx1/2∫02t2f’’(t)dt=1/8∫02t2f’’(t)dt=1/8t2f’(t)|02-1/4∫02tf’(t)dt
=-1/4tf(t)|02+1/402f(t)dt
=-1/4+1/4∫02f(t)dt=0
故所求面积S=∫02f(x)dx=∫02f(t)dt=1  
转载请注明原文地址:https://jikaoti.com/ti/qIhRFFFM
0

最新回复(0)