首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数z=f(x,y)的全微分dz=2xdx-2ydy,并且f(1,1)=2,求f(x,y)在椭圆域上的最大值和最小值.
已知函数z=f(x,y)的全微分dz=2xdx-2ydy,并且f(1,1)=2,求f(x,y)在椭圆域上的最大值和最小值.
admin
2013-09-15
54
问题
已知函数z=f(x,y)的全微分dz=2xdx-2ydy,并且f(1,1)=2,求f(x,y)在椭圆域
上的最大值和最小值.
选项
答案
根据题意,先求f(x,y)的表达式. 由已知有dz=dx
2
-dy
2
=d(x
2
-y
2
)[*]z=x
2
-y
2
+C. 又为f(1,1)=2,所以C=2,从面z=f(x,y)=x
2
-y
2
+2. 然后求出f(x,y)在D内驻点及相应函数值,解[*] 得(x,y)=(0,0),即f(x,y)在D内有唯一驻点(0,0),且f(0,0)=2. 接着求f(x,y)在D的边界y
2
=φ(1-x
2
)上的最大值和最小值. 将y
2
=φ(1-x
2
)(|x|≤1)代入x=x
2
-y
2
+2得z(x)=x
2
-φ(1-x
2
)+2=5x
2
-2. 显然,z(x)在[-1,1]上的最大值为3,最小值为-2, 综上,z=f(x,y)在D上的最大值是max{2,3,-2}=3,最小值是min{2,3,-2}=-2.
解析
转载请注明原文地址:https://jikaoti.com/ti/q5DRFFFM
0
考研数学二
相关试题推荐
设矩阵A=,若集合Ω={1,2},则线性方程组Ax=b有无穷多解的充分必要条件为()
证明n阶矩阵相似。
(08年)设3阶矩阵A的特征值为1,2,2,E为3阶单位矩阵,则|4A-1-E|=_______.
(02年)(1)验证函数y(χ)=1++…(-∞<χ<+∞)满足微分方程y〞+y′+y=eχ(2)利用(1)的结果求幂级数的和函数.
设四阶矩阵A=(aij)不可逆,a12的代数余子式A12≠0,a1,a2,a3,a4为矩阵A的列向量组,A*为A的伴随矩阵,则方程组A*x=0的通解为
(2014年)求极限
设A=(α1,α2,α3,α4)为四阶方阵,且α1,α2,α3,α4为非零向量组,设AX=0的一个基础解系为(1,0,-4,0)T,则方程组A*X=0的基础解系为()。
设连续函数f(x)满足求
设f(u)为连续函数,且∫0χtf(2χ-t)dt=ln(1+χ2),f(1)=1,则∫12f(χ)dχ=_______.
随机试题
患者,女,32岁,轻度腹泻伴低热3个月,右下腹可触及包块。X线钡餐检查在回盲部可见跳跃征象。最可能的诊断是
女,45岁,右耳听力下降半年余,CT检查如图,最可能的诊断是
朱某系某县民政局副局长,率县福利企业年检小组到同学黄某任厂长的电气厂年检时,明知该厂的材料有虚假、残疾员工未达法定人数,但朱某以该材料为准,使其顺利通过年检。为此。电气厂享受了不应享受的退税优惠政策,获取退税300万元。黄某动用关系,帮朱某升任民政局局长。
从法理学的角度看,下列表述中不正确的是:()
与传统的贷款融资方式不同,项目融资主要是以()来安排融资。
在下列各项中,具有流动性强的特点,可以作为立即投入流通的交换媒介的是______。
(操作员:王主管;账套:60l账套;操作日期:2014年1月31日)设置固定资产变动方式。固资变动方式编码:06固资变动方式名称:投资者投入变动类型:增加固定资产
关于招股说明书或招股意向书刊登后至获准上市前,拟发行公司发生重大事项的,下列说法正确的是( )。
张某有临街住房两间,温州人谭某准备租借其中1间开一家欢欢发廊,张某表示拿出1间住房开发廊可以,但他不要租金,而要从发廊盈利中分一部分。谭某苦于租不到更好的房屋作门面,于是同意了张某的要求。两人签订了书面合同,在合同中约定:张某腾出1间房并负责修理、安装,以
现代意义上的期货市场产生于19世纪中期的()。
最新回复
(
0
)