首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶实对称矩阵,λ=5是A的二重特征值.对应的特征向量为ξ1=[1,-1,2]T,ξ2=[1,2,1]T,则二次型f(x1,x2,x3)=xTAx在x0=[1,5,0]T的值f(1,5,0)=________.
设A是3阶实对称矩阵,λ=5是A的二重特征值.对应的特征向量为ξ1=[1,-1,2]T,ξ2=[1,2,1]T,则二次型f(x1,x2,x3)=xTAx在x0=[1,5,0]T的值f(1,5,0)=________.
admin
2021-07-27
24
问题
设A是3阶实对称矩阵,λ=5是A的二重特征值.对应的特征向量为ξ
1
=[1,-1,2]
T
,ξ
2
=[1,2,1]
T
,则二次型f(x
1
,x
2
,x
3
)=x
T
Ax在x
0
=[1,5,0]
T
的值f(1,5,0)=________.
选项
答案
130
解析
已知Aξ
1
=5ξ
1
,Aξ
2
=5ξ
2
,故二次型f(x
1
,x
2
,x
3
)=x
T
Ax在特征向量处的值为f(ξ
1
)=ξ
1
T
Aξ
1
=5ξ
1
T
ξ
1
,f(ξ
2
)=ξ
2
T
Aξ
2
=5ξ
2
T
ξ
2
.为求二次型在x
0
处的值,可将x
0
用ξ
1
,ξ
2
线性表出,设x
0
=x
1
ξ
1
+x
2
ξ
2
,得方程组
解得x
1
==1,x
2
=2,即x
0
=-ξ
1
+2ξ
2
.f(x
0
)=x
0
T
Ax
0
=(-ξ
1
+2ξ
2
)
T
A(-ξ
1
+2ξ
2
)=(-ξ
1
T
)A(-ξ
1
)+(-ξ
1
T
)A(2ξ
2
)+2ξ
2
T
A(-ξ
1
)+2ξ
2
T
A(2ξ
2
)=5ξ
1
T
ξ
1
-2·5ξ
1
T
ξ
2
-2·5ξ
2
T
ξ
1
+4·5ξ
2
T
ξ
2
=30-10-10+120=130.
转载请注明原文地址:https://jikaoti.com/ti/pylRFFFM
0
考研数学二
相关试题推荐
设A为n阶可逆矩阵,λ为A的特征值,则A*的一个特征值为().
计算(3χy+y2)dσ,其中D由y=χ2,y=4χ2及y=1围成.
当x>0,y>0,z>0时,求u(x,y,z)=lnx+lny+3lnz在球面x2+y2+z2=5R2上的最大值,并证明abc3≤(其中a>0,b>0,c>0)
设A为3阶非零矩阵,且满足aij=Aij(i,j=1,2,3),其中Aij为aij的代数余子式,则下列结论:①A是可逆矩阵;②A是对称矩阵;③A是不可逆矩阵;④A是正交矩阵.其中正确的个数为()
设二次型f(x1,x2,x3)=XTAX,已知r(A)=2,并且A满足A2-2A=0.则下列各标准二次型(1)2y12+2y22.(2)2y12.(3)2y12+2y32.(4)2y22+2y32.中可用正交变换化为f的是(
设A,B均为n阶矩阵,且AB=A+B,则下列命题中:①若A可逆,则B可逆;②若A+B可逆,则B可逆;③若B可逆,则A+B可逆;④A—E恒可逆.正确的个数为()
设矩阵,行列式|A|=一1,又A*的属于特征值λ0的一个特征向量为==(一1,一1,1)T,求a,b,c及λ0的值。
二次型f(x1,x2,x3)=x12+5x22+x32一4x1x2+2x2x3的标准形可以是()
四阶行列式的值等于()
随机试题
纲要体现了保障权力与规范权利相结合的理念。
简述社会主义社会教育的基本特征。
下列关于资产负债表项目的排列规则说法正确的是()
患者,女,20岁。因贫血入院。化验Hb65g/L,MCV72fl,MCH24pg,MCHC31%。最可能的诊断是
监理单位与建设单位的关系是()。
人才管理的主要内容包括()。
假定某投资者在某年3月1日以期货方式按每股30元的价格买进1000股A公司股票,交割日为同年6月1日。同年5月12日该股票价格涨到32元,该投资者随即以每股32元的价格卖出该股票1000股的期货合约。若不考虑佣金、契约税等交易成本,从这项交易中该投资者(
一般资料:求助者,男,33岁,公司职员。案例介绍:今年春节前求助者的父亲在老家突发心脏病去世,求助者将母亲接来同住。最初的一个多月的时间里,妻子和母亲还能够和平相处,但随着时间的推移,双方的矛盾逐渐显现出来;从日常的饮食起居到孩子的培养教育都能成
班主任工作的重点是()。
"DoyouwanttoseemyIDcardormydriver’slicense?""______willdo."
最新回复
(
0
)