首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs均为n维列向量,A是m×n矩阵,下列选项正确的是
设α1,α2,…,αs均为n维列向量,A是m×n矩阵,下列选项正确的是
admin
2017-04-24
40
问题
设α
1
,α
2
,…,α
s
均为n维列向量,A是m×n矩阵,下列选项正确的是
选项
A、若α
1
,α
2
,…,α
s
线性相关,则Aα
1
,Aα
2
,…,Aα
s
线性相关.
B、若α
1
,α
2
,…,α
s
线性相关,则Aα
1
,Aα
2
,…,Aα
s
线性无关.
C、若α
1
,α
2
,…,α
s
线性无关,则Aα
1
,Aα
2
,…,Aα
s
线性相关.
D、若α
1
,α
2
,…,α
s
线性无关,则Aα
1
,Aα
2
,…,Aα
s
线性无关.
答案
A
解析
若α
1
,α
2
,…,α
s
线性相关,则存在一组不全为零的常数k
1
,k
2
,…,k
s
,使得
k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0
两端左乘矩阵A,得
k
1
Aα
1
+k
2
Aα
2
+…+k
s
Aα
s
=0
因k
1
,k
2
,…,k
s
,不全为零,故由线性相关的定义,即知向量组Aα
1
,Aα
2
,…,Aα
s
线性相关.
用排除法
若A=0为零矩阵,则组Aα
1
,Aα
2
,…,Aα
s
均为零向量,从而组Aα
1
,Aα
2
,…,Aα
s
线性相关,于是选项(B)、(D)均不对,若A=
,则α
1
,α
2
线性无关,且Aα
1
=α
1
与Aα
2
=α
2
线性无关,故选项(C)也不对,所以只有选项(A)正确.
转载请注明原文地址:https://jikaoti.com/ti/plzRFFFM
0
考研数学二
相关试题推荐
设f(x)在[0,2]上可导,且|f’(x)|≤M,又f(x)在(0,2)内至少有一个零点,证明:|f(0)|+|f(2)|≤2M.
A、x=0是f(x)的零点B、(0,f(0))是y=f(x)的拐点C、x=0是f(x)的极大值点D、x=0是f(x)的极小值点D
设f(x)为二阶可导的奇函数,当x∈(0,+∞)时,f’(x)>0,f"(x)>0,则当x∈(-∞,0)时().
设非齐次线性微分方程y’+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解为________。
设y=(C1+C2x)e2x是某二阶常系数线性微分方程的通解,求对应的方程。
求微分方程ylnydx+(x-lny)dy=0的通解。
已知函数f(x)=ax3-6ax2+b(a>0),在区间[-1,2]上的最大值为3,最小值为-29,求a,b的值.
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
已知实二次型f(x1,x2,x3)=a(x12,x22,x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_______.
(2009年试题,23)设二次型f(x1,x2,x3)=ax12+ax22+(a一1)x32+2x1x3一2x2x3.(I)求二次型f的矩阵的所有特征值;(Ⅱ)若二次型f的规范形为y12+y22,求a的值.
随机试题
合成dTMP的直接前体是
A.硅肺B.肺含铁血黄素沉着症C.特发性肺间质纤维化D.细支气管肺泡癌E.急性血行播散性肺结核男性,50岁,煤矿工人,吸烟30年,近5年出现咳嗽、气短,并逐年加重,无发热,胸片示双肺结节影(直径1~3mm),肺门阴影密度增加,可见蛋壳样钙化的淋
信度是用来表明测量工具的
陈某被判处有期徒刑10年,在服刑期间死亡,后经审判监督程序判决陈某无罪。陈某家中有妻子和一未成年的儿子及靠陈某扶养的无劳动能力的弟弟,陈某的弟弟在此赔偿案件中有何权利?()
阿根廷2001--2002年发生了严重的金融危机,大量富人和中产阶级基于对阿根廷前途的担忧纷纷将资产转移至国外或将资产转换为美元,这导致了2001年12月1日阿根廷政府不得不宣布严格的资本冻结措施,包括冻结银行存款,限制提取现金及限制兑换美元,这加剧了阿根
下边给定的是纸盒的外表面,下列能由它折叠而成的是()。
A、 B、 C、 D、 C
人民群众之所以信任、选择和支持中国共产党,是因为()
Whoisthewomanlookingfor?
Whatisthetalkmainlyabout?
最新回复
(
0
)