设随机变量X,Y相互独立,且X~P(1),Y~P(2),求P{max(X,Y)≠0}及P{min(X,Y)≠0}.

admin2018-01-23  28

问题 设随机变量X,Y相互独立,且X~P(1),Y~P(2),求P{max(X,Y)≠0}及P{min(X,Y)≠0}.

选项

答案P{max(X,Y)≠0}=1-P{max(X,Y)=0}=1-P(X=0,Y=0) =1-P(X=0)P(Y=0)=1-e-1e-2=1-e-3 P{min(X,Y)≠0}=1-P{min(X,Y)=0}, 令A={X=0},B={Y=0},则{min(X,Y)=0}=A+B, 于是P{min(X,Y)=0}=P(A+B)=P(A)+P(B)-P(AB) =e-1+e-2-e-1.e-2=e-1+e-2-e-3. 故P{min(X,Y)≠0}=1-e-1-e-2+e-3

解析
转载请注明原文地址:https://jikaoti.com/ti/ocKRFFFM
0

最新回复(0)