首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x3)=x12+x22+x32-4x1x2-4x1x3+2ax2x3通过正交变换x=Qy化为标准形f(x1,x2,x3)=3y12+3y22+by32,求参数a,b及所用的正交变换.
已知二次型f(x1,x2,x3)=x12+x22+x32-4x1x2-4x1x3+2ax2x3通过正交变换x=Qy化为标准形f(x1,x2,x3)=3y12+3y22+by32,求参数a,b及所用的正交变换.
admin
2016-04-29
59
问题
已知二次型f(x
1
,x
2
,x
3
)=x
1
2
+x
2
2
+x
3
2
-4x
1
x
2
-4x
1
x
3
+2ax
2
x
3
通过正交变换x=Qy化为标准形f(x
1
,x
2
,x
3
)=3y
1
2
+3y
2
2
+by
3
2
,求参数a,b及所用的正交变换.
选项
答案
本题主要考查特征值的性质及二次型通过正交变换化为标准形,是一道有一定难度的综合题. 二次型的矩阵为 [*] 由题设知矩阵A的特征值为λ
1
=3,λ
2
=3,λ
3
=b.由特征值的性质, [*] 解得a=-2,b=-3,从而矩阵A的特征值是3,3,-3. 当λ=3时,对(3E-A)x=0的系数矩阵作初等行变换, [*] 其基础解系为α
1
=(-1,1,0)
T
,α
2
=(-1,0,1)
T
. 当λ=-3时,对(-3E-A)=0的系数矩阵作初等行变换, [*] 其基础解系为α
2
=(1,1,1)
T
. 将α
1
,α
2
,Schmidt正交化,令 [*] 令Q=(γ
1
,γ
2
,γ
3
),经过正交变换x=Qy,f(x
1
,x
2
,x
3
)化成标准形 f(x
1
,x
2
,x
3
)=3y
1
2
+3y
2
2
-3y
3
2
.
解析
转载请注明原文地址:https://jikaoti.com/ti/yHxRFFFM
0
考研数学三
相关试题推荐
科学发展观是以胡锦涛为总书记的党中央,在新世纪新阶段全面建设小康社会进程中,在新的历史起点上推进中国特色社会主义事业过程中形成和发展起来的,科学发展观形成过程中所经历的一个重大事件是()。
毛泽东回顾说:“前八年照抄外国的经验。但从一九五六年提出十大关系起,开始找到自己的一条适合中国的路线。”毛泽东高度评价《论十大关系》是因为它()。
马克思、恩格斯在《共产党宣言》1872年德文版序言中指出,“不管最近25年来的情况发生了多大的变化,这个《宣言》中所阐述的一般原理整个说来直到现在还是完全正确的……这些原理的实际运用,正如《宣言》中所说的,随时随地都要以当时的历史条件为转移。”这一论述,实
存大革命失败、白色恐怖极其严重的条件下,中国革命之所以能够得到坚持和发展,跟本的原因就在于()。
在谈到游击战争在抗日战争中的战略地位时,毛泽东说:“抗日战争的作战形式中,主要的是运动战,其次就要算是游击战了。我们说,整个战争中,运动战是主要的,游击战是辅助的……但这不是说:游击战在抗日战争中的战略地位不重要。”抗日战争中游击战争的战略地位和作用是(
恩格斯指出:“19世纪三大空想社会主义者的学说虽然含有十分虚幻和空想的性质,但他们终究是属于一切时代最伟大的智士之列的,他们天才地预示了我们现在已经科学地证明了其正确性的无数真理”。空想社会主义与科学社会主义的根本区别在于()。
设向量组α1,α2,…,αm线性无关,向量β1可用它们线性表示,β2不能用它们线性表示,证明向量组α1,α2,…,αm,λβ1+β2(λ为常数)线性无关.
用适当的变换将下列方程化为可分离变量的方程,并求出通解:;(2)(x+y)2yˊ=1;(3)xyˊ+y=yln(xy);(4)xyˊ+x+sin(x+y)=0.
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:存在η∈(1/2,1),使f(η)=η;
设函数f(x,y)可微,且对任意x,y都有<0,则使不等式f(x1,y1)<f(x2,y2)成立的一个充分条件是()
随机试题
十二铜表法
调节眼压的最主要因素是
下列说法正确的是
下列不是高原环境下人体的碳水化合物代谢特点的是
“重阴必阳,重阳必阴”说明了阴阳之间的关系是
如图所示,平面静定桁架中零杆个数为()。
我国合同法规定,在咨询合同履行过程中,受托人利用委托人提供的技术资料和工作条件完成的新的技术成果,属于()。当事人另有约定的,则按照其约定。
下列各项中正确的是
E
A、Thelibraryisnotjustaplaceforquietreadingasbefore.B、Moreandmorepeoplegotothelibrary,butfewerandfewerof
最新回复
(
0
)