首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X1,X2,X3相互独立且都服从参数为P的0-1分布,已知矩阵 为正定矩阵的概率为.试求: 随机变量 的分布律.
设随机变量X1,X2,X3相互独立且都服从参数为P的0-1分布,已知矩阵 为正定矩阵的概率为.试求: 随机变量 的分布律.
admin
2017-06-12
52
问题
设随机变量X
1
,X
2
,X
3
相互独立且都服从参数为P的0-1分布,已知矩阵
为正定矩阵的概率为
.试求:
随机变量
的分布律.
选项
答案
Y=X
1
X
3
-X
2
2
的所有取值为-1,0,1, P{Y=-1}=P{X
1
=1,X
2
=1,X
3
=0}+P{X
1
=0,X
2
=1,X
3
=1}+P{X
1
= 0,X
2
=1,X
3
=0)=[*] P{Y=0}=P{X
1
=0,X
2
=0,X
3
=0}+P{X
1
=1,X
2
=1,X
3
=1}+P{X
1
=0, X
2
=0,X
3
=1}+P{x
1
=1,X
2
=0,X
3
=0}=[*]. P{Y=1}=P{X
1
=1,X
2
=0,X
3
=1}=[*] 所以,Y的分布律为 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/oUwRFFFM
0
考研数学一
相关试题推荐
考虑二元函数的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在.若用“P→Q”表示可由性质P推出性
若函数f(x)满足方程f"(x)+f’(x)-2f(x)=0及f"(x)+f(x)=2ex,则f(x)=_________.
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设α=(1,1,1)T,β=(1,0,k)T,若矩阵αβT相似于,则k=__________.
设A为4×3矩阵,η1,η2,η3是非齐次线性方程组Ax=β的3个线性无关的解,k1,k2为任意常数,则Ax=β的通解为
已知向量组(I):α1,α2,α3;(II):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为r(I)=r(Ⅱ)=3,r(Ⅲ)=4.证明向量组α1,α2,α3,α5-α4的秩为4.
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记α=,β=证明二次型,对应的矩阵为2ααT+ββT;
设常数a≠1/2,则=________.
设两个随机变量X与Y独立同分布,P{X=-1}=P{Y=-1}=1/2,P{X=1}=P{Y=1}=1/2,则下列各式中成立的是().
考虑一元二次方程x2+Bx+C=0,其中B,C分别是将一枚骰子接连掷两次先后出现的点数.求该方程有实根的概率p和有重根的概率q.
随机试题
驾驶机动车看到路边有这种标志时怎样行驶?
正常人血清总钙浓度的参考范围是
我国新生儿败血症多见的病菌是
关于投标报价,下列说法中正确的是()。
甲股份有限公司(以下简称甲公司)系一家上市公司,2017年至2019年对乙股份有限公司(以下简称乙公司)投资业务的有关资料如下:(1)2017年1月1日,甲公司与A公司签订股权转让协议,该股权转让协议规定:甲公司收购A公司持有的乙公司股权,收购价款为2
物流服务现状分析包括自我服务水平分析和竞争对手服务水平分析。
教育既与社会有内在联系,又具有相对独立性。()
之所以要坚持和完善以家庭承包经营为基础、统分结合的双层经营体制,根本上是因为()。
甲和乙两人在一条长150米的直线道路上往返跑步。已知甲的速度为4米/秒,乙的速度为6米/秒,现他们分别从道路的两端出发,则当两人第五次相遇时,经过的时间为()。
在结构化分析方法中,描述信息在软件系统中流动与处理的图形工具为【】。
最新回复
(
0
)