设函数,数列{xn}满足lnxn+<1。证明xn存在,并求此极限。[img][/img]

admin2019-07-22  41

问题 设函数,数列{xn}满足lnxn+<1。证明xn存在,并求此极限。[img][/img]

选项

答案令[*],则x<1。于是f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,所以x=1是f(x)唯一的最小值点,且f(x)≥f(1)=1,从而有[*]。再结合题目中的条件有 [*] 所以xn<xn+1,0<xn<e,即数列{xn}单调递增且有界。由单调有界准则可知,极限[*]存在。 令[*] 而[*] 由前面讨论出的函数f(x)性质可知[*]。

解析
转载请注明原文地址:https://jikaoti.com/ti/nyERFFFM
0

随机试题
最新回复(0)