首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设奇函数f(x)在[一1,1]上具有二阶导数,且f(1)=1,证明: 存在ξ∈(0,1),使得f'(ξ)=1;
设奇函数f(x)在[一1,1]上具有二阶导数,且f(1)=1,证明: 存在ξ∈(0,1),使得f'(ξ)=1;
admin
2019-01-19
31
问题
设奇函数f(x)在[一1,1]上具有二阶导数,且f(1)=1,证明:
存在ξ∈(0,1),使得f'(ξ)=1;
选项
答案
令F(x)=f(x)一x,F(0)=f(0)=0,F(1)=f(1)一1=0, 则由罗尔定理知,存在ξ∈(0,1)使得F'(ξ)=0,即f'(ξ)=1。
解析
转载请注明原文地址:https://jikaoti.com/ti/nqBRFFFM
0
考研数学三
相关试题推荐
设函数在x=1处连续,则a=__________.
已知A是3阶实对称矩阵,特征值是1,2,一1,相应的特征向量依次为α1=(a一1,1,1)T,α2=(4,一a,1)T,α3=(a,2,6)T,A*是A的伴随矩阵,试求齐次方程组(A*+E)x=0的基础解系。
设A是n阶反对称矩阵.(1)证明:对任何n维列向量α,恒有αTAα=0.(2)证明:对任何非零常数c,矩阵A+cE恒可逆.
设A是三阶实对称矩阵,特征值是1,0,一2,矩阵A的属于特征值1与一2的特征向量分别是(1,2,1)T与(1,一1,a)T,求Ax=0的通解.
设A=,若Ax=0的基础解系由2个线性无关的解向量构成,
设A是n阶实对称矩阵,证明:A可逆的充要条件是存在n阶实矩阵B,使得AB+BTA是正定阵.
每次从1,2,3,4,5中任取一个数,且取后放回,用bi表示第i次取出的数(i=1,2,3).三维列向量b=(b1,b2,b3)T,三阶方阵A=,求线性方程组Ax=b有解的概率.
设随机变量X的分布函数为F(x)=.
设二维随机变量(X,Y)在区域D=((x,y)|0<x<1,x2<)}上服从均匀分布.令(1)写出(X,Y)的概率密度f(x,y);(2)问U与X是否相互独立?并说明理由;(3)求Z=U+X分布函数F(x).
设随机变量X1和X2各只有一1,0,1等三个可能值,且满足条件P{Xi=一1}=P{Xi=1}=(i=1,2).试在下列条件下分别求X1和X2的联合分布.(1)P{X1X2=0}=1;(2)P{X1+X2=0}=
随机试题
以下______是无线传输介质。
原发性肝癌根据大体形态,通常分为以下哪几型
培养志贺菌常用的培养基中含有
外盘大于内盘,通常股价会()
20×8年1月2日,甲公司以发行1200万股本公司普通股(每股面值1元)为对价,取得其母公司控制的乙公司60%的股权,甲公司该项合并及合并后有关交易或事项如下:(1)甲公司于20×8年1月2日控制乙公司,当日甲公司净资产账面价值为35000万元,其中:股
读“台湾人口金字塔图组”,完成下列问题。预测到2031年台湾面临的主要人口问题是()
【材料(大意)】材料一:针对城管管理小贩占道经营的现象,城管进行治理,在此过程中小贩说城管打砸,城管说小贩推搡,不配合执法。材料二:2012年2月27日有消息称常州城管一线执法部门共有12名硕士研究生。帖子一出立即引发网友热议。有人说“
玩具店新进一批成本为40元的玩具,按40%的利润定价出售,售出80%以后,剩下的玩具打折扣,结果获得的利润是原计划的86%,剩下的玩具出售时按定价打了几折?
1979年的《刑法》第158条规定:禁止任何人利用任何手段扰乱社会秩序,扰乱社会秩序情节严重,致使工作、生产、营业和教学、科研无法进行、国家和社会遭受严重损失的,对首要分子处5年以下有期徒刑、拘役、管制或者剥夺政治权利。从结构上看,这一法律规范缺少什么?(
A.divisionB.sufficientC.constantD.depthsE.exteriorF.whereasG.stableH.provedI.e
最新回复
(
0
)