首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设λ1、λn分别为n阶实对称矩阵的最小、最大特征值,X1,Xn分别为对应于λ1、λn的特征向量,记 f(X)=XTAX/XTX,X∈Rn,X≠0 证明:二次型f(X)=XTAX在XTX=1条件下的最大(小)值等于实对称矩阵A的最大(小)特征值.
设λ1、λn分别为n阶实对称矩阵的最小、最大特征值,X1,Xn分别为对应于λ1、λn的特征向量,记 f(X)=XTAX/XTX,X∈Rn,X≠0 证明:二次型f(X)=XTAX在XTX=1条件下的最大(小)值等于实对称矩阵A的最大(小)特征值.
admin
2018-07-27
43
问题
设λ
1
、λ
n
分别为n阶实对称矩阵的最小、最大特征值,X
1
,X
n
分别为对应于λ
1
、λ
n
的特征向量,记
f(X)=X
T
AX/X
T
X,X∈R
n
,X≠0
证明:二次型f(X)=X
T
AX在X
T
X=1条件下的最大(小)值等于实对称矩阵A的最大(小)特征值.
选项
答案
设λ
n
为A的最大特征值,X
n
为对应的单位特征向量,即有AX
n
=λ
n
X
n
,X
n
T
X
n
=1.在X
T
X=1条件下,可知,X
T
AX≤λ
n
,又X
n
T
AX
n
=X
n
T
λ
n
X
n
=λ
n
X
n
T
X
n
=λ
n
,故[*]X
T
AX=λ
n
=f(X
n
).类似可证[*]X
T
Ax=λ
1
=f(X
1
),其中λ
1
为A的最小特征值,X
1
为对应的单位特征向量.
解析
转载请注明原文地址:https://jikaoti.com/ti/nKIRFFFM
0
考研数学三
相关试题推荐
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵P=其中A*是A的伴随矩阵,E为n阶单位矩阵.(Ⅰ)计算并化简PQ;(Ⅱ)证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
设A,B均是n阶矩阵,下列命题中正确的是
证明n维列向量α1,α2,…,αn线性无关的充要条件是
设A是n×m矩阵,B是m×n矩阵,其中n<m,若AB=E,证明B的列向量线性无关.
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0.证明:向量组α,Aα,…,Ak-1α是线性无关的.
若向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关,试问α4能否由α1,α2,α3线性表出?并说明理由.
设A,B都是m×n矩阵,则r(A+B)≤r(A)+r(B).
随机试题
下丘脑性闭经常见的原因是
关于早期龋的描述,不正确的是
下列哪项不是自发性心绞痛的特点
《医疗事故处理条例》规定,医院对参加医疗事故处理的患者近亲属交通费、误工费和住宿费的损失赔偿人数不得超过()。
接触职业危害因素不一定就会患职业病,职业病发生与否主要取决于()。
《建筑材料及制品燃烧性能分级》(GB8624—2012)与《建筑材料及燃烧性能分级》(GB8624—2006)对建筑内部装修材料按燃烧性能划分级对应关系的描述,正确的是()。
全面推行政务公开要求推进()。
学生李某从小父母离异,跟着年老多病的祖父生活,祖父对他管教不严,他经常和社会上的一些待业青年混在一起,打架斗殴。父亲偶尔回家,对他不是打就是骂。在学校,他破坏课堂纪律,拖欠作业,完不成学习任务,还欺负小同学。全班同学都看不起他,疏远他,但他喜欢运动,是班级
汇率是本国货币与其他货币之间的比价关系。是外汇在市场中的价格。
Theautomobilehasmanyadvantages.Aboveall,it【B1】______peoplefreedomtogowheretheywanttogowhentheywanttogothere
最新回复
(
0
)