首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分I=
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分I=
admin
2017-01-13
43
问题
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,
其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分I=
选项
答案
将二重积分[*],转化为累次积分可得 [*] 首先考虑∫
0
1
xyf
xy
’’(x,y)dx,注意这里把变量y看作常数,故有 ∫
0
1
xyf
xy
’’(x,y)dx=y∫
0
1
xdf
y
’(x,y) =xyf
y
’(x,y)|
0
1
一∫
0
1
yf
y
’(x,y)dx =yf
y
’(1,y)一∫
0
1
yf
y
’(x,y)dx。 由f(1,y)=f
y
’(x,1)=0易知f’(1,y)=f
y
’(x,1)=0。所以 ∫
0
1
xyf
xy
’’(x,y)dx=一∫
0
1
yf
y
’(x,y)dx。 因此 [*] 对该积分交换积分次序可得, 一∫
0
1
dyyf
y
’(x,y)dx=-∫
0
1
dx∫
0
1
yf
y
’(x,y)dy。 再考虑积分∫
0
1
yf
y
’(x,y)dy,注意这里把变量x看作常数,故有 ∫
0
1
yf
y
’(x,y)dy=∫
0
1
ydf(x,y) =yf(x,y)|
0
1
一∫
0
1
f(x,y)dy =一∫
0
1
f(x)dy, 因此 [*] =∫
0
1
dx∫
0
1
f(x,y)dy [*]。
解析
转载请注明原文地址:https://jikaoti.com/ti/mfzRFFFM
0
考研数学二
相关试题推荐
对于一切实数t,函数f(t)连续的正函数且可导,同时有f(-t)=f(t),又函数g(x)=∫-aa|x-t|f(t)dt,a>0,x∈[-a,a]将g(x)的最小值当作a的函数,使其等于f(a)-a2-1,并求f(x).
设f(y)是连续函数,且F(x)=∫abf(y)|x-y|dy,a<x<b,求F"(x).
二元函数在点(0,0)处________。
将函数展开成(x-1)的幂级数,并证明:
设正项级数{an}单调减少,且发散,试问级数是否收敛,并说明理由。
设f(x)为连续函数,证明∫0xf(t)(x-t)dt=∫0x(∫0tf(u)du)dt.
求微分方程xy’+y-ex=0满足条件y|x=1=e的特解。
求齐次方程满足y|x=1=2的特解。
设矩阵是矩阵A*的一个特征向量,A是α对应的特征值,其中A*是矩阵A的伴随矩阵.试求a,b和λ的值.
已知二次型f(x1,x2,x3)=(1-a)x22+(1-a)x22+2x32+2(1+a)x1x2的秩为2.求正交变换x=Qy,把f(x1,x2,x3)化成标准形;
随机试题
容易发生出血性梗死的器官是()
A、采用化学发光剂作为酶反应底物B、用化学发光剂直接标记抗原或抗体C、抗体包被在磁颗粒表面D、发光底物是二价的三联吡啶钌E、以荧光物质标记抗体微粒子化学发光免疫采用
甲公司为上市公司,系增值税一般纳税人,适用的增值税税率为17%。为提高市场占有率及实现多元化经营,甲公司在2014年及以后进行了一系列投资和资本运作。2014年以前甲公司仅有一家子公司乙公司。以下资料不考虑所得税等因素的影响。(1)甲公司于2014年7月
某客户在2011年9月1日存入一笔50000元一年期整存整取定期存款,假设年利率3%,一年后存款到期时,可回收()元。
下列属于智力因素的是()。
小李认为,虽然在交通高峰时期路上的车辆、行人很多,但只要大家都能遵守交通法规,我们的安全就会有保障。对于小李的这种看法,在一定程度上体现了法具有()。
给定资料1.人最需要的是灵魂,城市也是如此。灵魂的塑造,说到底是一种精神的塑造。因此,城市精神,就是城市灵魂的呈现。它所书写的,应该是城市的底蕴、城市的韵味、城市的品位,也是一个城市对于自己所肩负的历史使命的高度自觉。世界之大,
军事检察院的分级和分类包括
HappyShoesDanceStudio-"Nobodymakeslearningtodancemorefun!"124N.HubbardDr.,Harvey,II.60009Phone:(012)55-DANCE
Atrendamongmanycollegesanduniversitiesistooffercoursesthatareslightlyoffthebeatentrack.Manyofthesecoursesd
最新回复
(
0
)