首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,证明:r(A)=1的充分必要条件是存在n维非零列向量α,β,使得A=αβT
设A为n阶矩阵,证明:r(A)=1的充分必要条件是存在n维非零列向量α,β,使得A=αβT
admin
2016-09-12
26
问题
设A为n阶矩阵,证明:r(A)=1的充分必要条件是存在n维非零列向量α,β,使得A=αβ
T
选项
答案
设r(A)=1,则A为非零矩阵且A的每行元素都成比例, 令A=[*]故A=αβ
T
,显然α,β为非零向量.设A=αβ
T
,其中α,β为非零向量,则A为非零矩阵.于是r(A)≥1.又r(A)=r(αβ
T
)≤r(α)=1,故r(A)=1.
解析
转载请注明原文地址:https://jikaoti.com/ti/mJzRFFFM
0
考研数学二
相关试题推荐
[*]
设f(x)在[0,1]上可导,F(x)=∫0xt2f(t)dt,且F(1)=f(1),证明:在(0,1)内至少存在一点ξ,使得.
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:在开区间(a,b)内至少存在一点ξ,使.
曲线y=-x3+x2+2x与x轴所围的图形面积为A=________。
如图所示,设曲线L的方程为y=f(x),且y">0,又MT/MP分别为该曲线在点M(x0,y0)处的切线和法线,已知线段MP的长度为(其中y’0=y’(x0),y0”=y"(x0))试推导出点P(ε,η)的坐标表达式。
已知一抛物线通过x轴上的两点A(1,0),B(3,0).计算上述两个平面图形绕x轴旋转一周所产生的两个旋转体体积之比。
求差分方程yx+1+2yx=x2+4x的通解。
求下列微分方程的通解。ydx+(x2-4x)dy=0
讨论下列函数在x=0处的导数,并作几何解释.(1)f(x)=|sinx|;(2)f(x)=x1/3;(3)f(x)=x2/3.
设三阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求矩阵A.
随机试题
简述著作权许可使用合同的概念和特征。
以调节气机升降为主要作用的脏腑是
在一起案件中,主审法官认为,生产假化肥案件中的“假化肥”不属于《刑法》第140条规定的“生产者、销售者在产品中掺杂、掺假,以假充真,以次充好或者以不合格产品冒充合格产品”中的“产品”范畴,因为《刑法》第147条对“生产假农药、假兽药、假化肥”有专门规定。关
对起重机进行动载荷试验的目的是()。
【给定资料】1.中国人讲究礼尚往来,逢年过节来往走动,互赠礼物,互祝安康,也是美好情谊的表达。特别是在结婚这样的喜事上更是讲究礼尚往来。操办婚礼无可厚非,但是动辄十几万甚至几十万的彩礼、几百几千的份子钱,亲朋好友连吃多天的婚宴酒席等大操大办、铺张
似动是什么?主要包含哪几种形式?
xsinx=________.
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:x>20与x≤20;
Untilthelate1940swhentelevisionbeganfindingitswayintoAmericanhomes,companiesreliedmainlyonprintandradiotopr
Thespecial-effectsperson’sjobisimportantbecause______.WhichofthefollowingisNOTanexampleofspecialeffectsinth
最新回复
(
0
)