首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶方阵,且A﹢E与A-E均可逆,则下列等式中不成立的是( )
设A为n阶方阵,且A﹢E与A-E均可逆,则下列等式中不成立的是( )
admin
2019-01-22
15
问题
设A为n阶方阵,且A﹢E与A-E均可逆,则下列等式中不成立的是( )
选项
A、(A﹢E)
2
(A-E)﹦(A-E)(A﹢E)
2
B、(A﹢E)
-1
(A-E)﹦(A-E)(A﹢E)
-1
C、(A﹢E)
T
(A-E)﹦(A-E)(A﹢E)
T
D、(A﹢E)(A-E)
*
﹦(A-E)
*
(A﹢E)
答案
C
解析
由A与E可交换得,A﹢E与A-E可交换,进而可得
(A﹢E)
2
(A-E)﹦(A﹢E)(A-E)(A﹢E)﹦(A-E)(A﹢E)
2
,所以(A﹢E)
2
与A-E可交换,故A项成立。
由A﹢E与A-E可交换得,(A-E)(A﹢E)﹦(A﹢E)(A-E)。在等式两边同时左乘、右乘(A﹢E)
-1
得,(A﹢E)
-1
(A-E)﹦(A-E)(A﹢E)
-1
;在等式两边同时左乘、右乘(A-E)
-1
得,(A﹢E)(A-E)
-1
﹦(A-E)
-1
(A﹢E),再在所得等式两边同时乘|A-E|得,(A﹢E)(A-E)
*
﹦(A-E)
*
(A﹢E)。故B、D两项成立。
事实上,只有当A
T
A﹦AA
T
时,(A﹢E)
T
(A-E)﹦(A-E)(A﹢E)
T
才成立。而A
T
A﹦AA
T
不一定成立。例如
,因此A
T
≠AA
T
。故本题选C。
本题考查矩阵乘法的性质。矩阵乘法不满足交换律,但有些矩阵之间是可交换的。本题的实质是判断每个选项包含的两个矩阵是否可交换。
转载请注明原文地址:https://jikaoti.com/ti/ll1RFFFM
0
考研数学一
相关试题推荐
给定向量组(I)α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,一1,a+2)T和(Ⅱ)β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.当a为何值时(I)和(Ⅱ)等价?a为何值时(I)和(Ⅱ)不等价?
已知线性方程组AX=β存在两个不同的解.①求λ,a.②求AX=β的通解.
在区间(0,1)中任取两数,求这两数乘积大于0.25的概率.
设有某种零件共100个,其中10个是次品,其余为合格品.现在从这些零件中不放回抽样,每次抽取一个零件,如果取出一个合格品就不再取下去,则在三次内取到合格品的概率为______。
设α,β都是n维列向量时,证明①αβT的特征值为0,0,…,0,βTα.②如果α不是零向量,则α是αβT的特征向量,特征值为βTα.
求以曲线为准线,{l,m,n}为母线方向的柱面方程.
设P(x,y,z),Q(x,y,z),R(x,y,z)在区域Ω连续,г:x=x(t),y=y(t),z=z(t)是Ω中一条光滑曲线,起点A,终点B分别对应参数tA与tB,又设在Ω上存在函数u(x,y,z),使得du=Pdx+Qdy+Rdz(称为Pdx+
设有平面光滑曲线l:x=x(t),y=y(t),z=0,t∈[α,β],以及空间光滑曲线L:x=x(t),y=y(t),z=f(x(t),y(t)),t∈[α,β],t=α,t=β;分别是起点与终点的参数.(I)试说明l,L及曲面S:z=f(x,y)的关
计算曲面积分,其中∑为圆柱面x2+y2=R2界于z=0及z=H之间的部分,r为曲面上的点到原点的距离(H>0).
计算曲面积分(x3+z)dydz+(y3+x)dzdx+dxdy,其中∑是曲线(|x|≤1)绕x轴旋转一周所得到的曲面,取外侧.
随机试题
什么是语体?
在头颈部肿瘤的放射治疗中,对脊髓正常组织的防护,不正确的是
患者,女,50岁。缺失,远中倾斜,松动Ⅰ~Ⅱ度,口底过浅,舌系带附着高,基牙,大连接体连接,可摘局部义齿修复如用铸造卡环臂固位,要求其倒凹深度应为
根据《中华人民共和国环境保护法》的规定,下列关于主要环境监测标准和制度表述中不符合相关规定的是()。
以下说法中错误的是()。
按物流管理组织的设置与职权划分可以划分为()。
下列句子中,没有语病的是()。
solvedistinguishinteractA.wouldthatchangethewayhumans【T7】______withthemB.oneparrotcan【T8】______fiveobjectsof
在ARM汇编语言程序设计中,用于子程序设计及调用,最常用的指令是()。
A、CountriesofAmericaandEurope.B、CountriesintheMiddleEast.C、Jewishcountries.D、India.A信息明示题。短文开头就指出ThecountriesofA
最新回复
(
0
)