设f(x)在[a,+∞]上可导,且当x>a时,f’(x)<k<0(k为常数).证明:如果f(a)>0,则方程f(x)=0在区间上有且仅有一个实根.

admin2019-08-27  22

问题 设f(x)在[a,+∞]上可导,且当x>a时,f’(x)<k<0(k为常数).证明:如果f(a)>0,则方程f(x)=0在区间上有且仅有一个实根.

选项

答案先证根的存在性.由题设知,f(x)在[*]上满足拉格朗日中值定理条件,故有 [*] 即[*] 又f(a)>0,由零点定理知,方程f(x)=0在[*]内有实根. 再由f’(x)<0(x>a)且f(x)在x≥a处连续知,f(x)在[*]上单调减少,故方程f(x)=0在[*]上最多有一个根. 综上所述,命题得证.

解析 【思路探索】先利用拉格朗日中值定理及零点定理证明根的存在性;再利用函数的单调性证明根的唯一性.
转载请注明原文地址:https://jikaoti.com/ti/kZCRFFFM
0

最新回复(0)