设函数f0(x)在(一∞,+∞)内连续,fn(x)=∫0xfn-1(t)dt(n=1,2,…). 证明:fn(x)绝对收敛.

admin2019-01-23  19

问题 设函数f0(x)在(一∞,+∞)内连续,fn(x)=∫0xfn-1(t)dt(n=1,2,…).
证明:fn(x)绝对收敛.

选项

答案对任意的x∈(一∞,+∞),f0(t)在[0,x]或[x,0]上连续,于是存在M>0(M与x有关),使得|f0(t)|≤M(t∈[0,x]或t∈[x,0]),于是 [*]

解析
转载请注明原文地址:https://jikaoti.com/ti/jV1RFFFM
0

最新回复(0)