首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为4阶矩阵,A=(α1,α2,α3,α4),若Aχ=0的基础解系为(1,2,-3,0)T,则下列说法中错误的是( )
设A为4阶矩阵,A=(α1,α2,α3,α4),若Aχ=0的基础解系为(1,2,-3,0)T,则下列说法中错误的是( )
admin
2020-01-15
47
问题
设A为4阶矩阵,A=(α
1
,α
2
,α
3
,α
4
),若Aχ=0的基础解系为(1,2,-3,0)
T
,则下列说法中错误的是( )
选项
A、α
1
,α
2
,α
3
线性相关。
B、α
4
可由α
1
,α
2
,α
3
线性表出。
C、α
1
,α
2
,α
4
线性无关。
D、α
1
可由α
2
,α
3
,α
4
线性表出。
答案
B
解析
Aχ=0的基础解系为(1,2,-3,0)
T
,可知r(A)=3且α
1
+2α
2
-3α
3
=0,则α
1
,
α
2
,α
3
,线性相关,所以A正确。
因为r(A)=3且α
1
,α
2
,α
3
线性相关,若α
4
可由α
1
,α
2
,α
3
线性表出,则
r(α
1
,α
2
,α
3
,α
4
)=r(α
1
,α
2
,α
3
)<3,
所以该选项错误,答案为B。
由于α
3
=
,可知α
1
能由α
1
,α
2
,α
4
线性表出,故
r(α
1
,α
2
,α
4
)=r(α
1
,α
2
,α
3
,α
4
)=3,
因此α
1
,α
2
,α
4
线性无关,所以C正确。
由于α
1
=-2α
2
+3α
3
,可知α
1
可由(α
2
,α
3
,α
4
线性表出,所以D正确。
转载请注明原文地址:https://jikaoti.com/ti/jICRFFFM
0
考研数学一
相关试题推荐
设f(x,y)=|x-y|φ(x,y),其中φ(x,y)在点(0,0)的某邻域内连续.则φ(0,0)=0是f(x,y)在点(0,0)处可微的()
设l为从点A(-π,0)沿曲线y=sinx至点B(π,0)的有向弧段,求
若(X,Y)服从二维正态分布N(1,2;1,4.0.5),则=__________
二次曲面yz+zx一xy=1为()
设A是3阶矩阵,ξ1=(1,2,-2)T,ξ2=(2,1,一1)T,ξ3=(1,1,t)T是非齐次线性方程组Ax=b的解向量,其中b=(1,3,-2)T,则()
设f(x)在闭区间[0,1]上连续,,证明在开区间(0,1)内存在两个不同的ξ1与ξ2使f(ξ1)=0,f(ξ2)=0.
设随机变量X的分布函数为Φ[2(x+1)],Φ(x)为标准正态分布的分布函数。则EX+E(X2)=__________.
设二次型xTAx=x12+x22+x32+2ax1x2+2bx1x3+2cx2x3,矩阵满足AB=0.求(A一3E)6.
设A是n阶可逆矩阵,B是把A的第2列的3倍加到第4列上得到的矩阵,则
随机试题
组织的生命力在于它的
Iknewamanwhowasaskedtobethenewdean(院长)oftheCollegeofBusinessofalargeuniversity.Whenhefirstarrived,hest
成人偏瘫患者早期Bobath方法中的何种技术预防和减轻痉挛
在神经—骨骼肌接头完成信息传递后,能消除接头处神经递质的酶是
施工项目经理部对生产安全事故应采取的处理程序是()。
旅游投诉处理机构接到投诉,应当在()工作日内做出受理决定;不予受理的,应当向投诉人送达《旅游投诉不予受理通知书》,告知不予受理的理由。
在△ABC中,E、D分别是AB、AC上的点,且BE=2AE,CD=2AD,若F是BC的中点,则S△AED:S△BEF=().
【B1】【B8】
某企业为了构建网络办公环境,每位员工使用的计算机上应当具备的设备是()
Howshouldoneinvestasumofmoneyinthesedaysofinflation(通货膨胀)?Leftinabankitwillhardlykeepitsvalue,howeverhig
最新回复
(
0
)