首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n(n≥3)阶矩阵,证明:(A*)*=|A|n-2A.
设A是n(n≥3)阶矩阵,证明:(A*)*=|A|n-2A.
admin
2018-05-21
25
问题
设A是n(n≥3)阶矩阵,证明:(A
*
)
*
=|A|
n-2
A.
选项
答案
(A
*
)
*
A
*
=|A
*
|E=|A|
n-1
E,当r(A)=n时,r(A
*
)=n,A
*
=|A|A
-1
,则(A
*
)
*
A
*
=(A
*
)
*
|A|A
-1
=|A|
n-1
E,故(A
*
)
*
=|A|
n-2
A.当r(A)=n-1时,|A|=0,r(A
*
)=1,r[(A
*
)
*
]=0,即(A
*
)
*
=0,原式显然成立.当r(A)<n-1时,|A|=0,r(A
*
)=0,(A
*
)
*
=O,原式也成立.
解析
转载请注明原文地址:https://jikaoti.com/ti/jFVRFFFM
0
考研数学一
相关试题推荐
设函数f(x)连续且恒大于零,其中Ω(t)={x,y,z)|x2+y2+z2≤t2},D(t)={(x,y)|x2+y2≤t2}.(1)讨论F(t)在区间(0,+∞)内的单调性.(2)证明当t>0时,F(t)>G(t).
设α1,α2,α3,α4,β为四维列向量组,A=(α1,α2,α3,α4),已知方程组Ax=β的通解是(一1,1,0,2)T+k(1,一1,2,0)T.(Ⅰ)β能否由α1,α2,α3线性表示?(Ⅱ)求α1,α2,α3,α4,β的一个极大线性无关组.
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.(Ⅰ)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示;(Ⅱ)设,求出可由两组向量同时表示的向量.
已知,B是3阶非零矩阵,且AB=0,则()
设总体X的密度函数为其中θ>一1是未知参数,X1,X2,…,Xn是来自总体X的简单随机样本.(Ⅰ)求θ的矩估计量;(Ⅱ)求θ的最大似然估计量.
设四维向量组α1=(1,1,4,2)T,α2=(1,一1,一2,6)T,α3=(一3,一1,a,一9)T,β=(1,3,10,a+b)T.问(Ⅰ)当a,b取何值时,β不能由α1,α2,α3线性表出;(Ⅱ)当a,b取何值时,β能由α1,α2,α3线性表出
设A是n(n>1)阶方阵,ξ1,ξ2,…,ξn是n维列向量,已知Aξ1=ξ2,Aξ2=ξ3,…,Aξn一1=ξn,Aξn=0,且ξn≠0.(Ⅰ)证明ξ1,ξ2,…,ξn线性无关;(Ⅱ)求Ax=0的通解;(Ⅲ)求出A的全部特征值和特征向量,并证明A不可
设向量α=(1,1,-1)T是矩阵A=的一个特征向量,则
设X1,X2,…,Xn是来自总体X的简单随机样本,且总体X的密度函数为求θ的极大似然估计量
随机试题
—个窗体上有两个文本框,其放置顺序分别是:Text1,Text2,要想在Text1中按“回车”键后焦点自动转到Text2上,需编写的事件是()。
患者,女,18岁。因车祸致颌面外伤而急诊,鼻翼扇动,发绀,脉弱、速,瞳孔略散大,抢救措施首先是
首选的检查是最适合的处理是
骨髓穿刺检查的禁忌证为()
某医生,争强好胜,总觉得时间不够用,说话快,走路快,脾气暴躁,容易激动,其行为类型属于
张某(男)与陆某(女)婚后感情不和而被法院判决离婚。假如判决生效后张某认为判决有误而欲申请再审,则根据他的下列哪项请求法院可以再审?()
以下何种情况下不应适用信赖保护原则?()
影响国债销售价格的因素中,市场利率的高低及其变化对国债销售价格起着显著的导向作用。()
Salesmanshipistheabilitytoswaypeopletowillinglybuyproductsorsupportnewideas.
Countlessmedicalstudieshaveconcludedthatplayingtoomanyvideogamescanbeharmfultoone’shealth.Now,however,itturn
最新回复
(
0
)