设曲线y=y(x)位于第一象限且在远点处与x轴相切,P(x,y)为曲线上任一点,该点与原点之间的弧长为l1,点p处的切线与y轴交于点A,点A,P之间的距离为l2,又满足x(3l1+2)=2(x+1)l2,求曲线y=y(x).

admin2020-02-28  21

问题 设曲线y=y(x)位于第一象限且在远点处与x轴相切,P(x,y)为曲线上任一点,该点与原点之间的弧长为l1,点p处的切线与y轴交于点A,点A,P之间的距离为l2,又满足x(3l1+2)=2(x+1)l2,求曲线y=y(x).

选项

答案由已知条件得y(0)=0,y’(0)=0,[*] P(x,y)处的切线Y-y=y’(X-x),令X=0,则Y=y-xy’,A的坐标为(0,y-xy’), [*] [*]

解析
转载请注明原文地址:https://jikaoti.com/ti/jBtRFFFM
0

最新回复(0)