设f(x)连续,y=y(x)由exy+(x一1)y=ex确定,又∫02xtf(2x—t)dt=∫0xy(t)dt,求∫02f(x)dx.

admin2017-07-26  55

问题 设f(x)连续,y=y(x)由exy+(x一1)y=ex确定,又∫02xtf(2x—t)dt=∫0xy(t)dt,求∫02f(x)dx.

选项

答案02xtf(2x—t)dt[*]∫02x(2x一u)f(u)du=2x∫02xf(u)du一∫02xf(u)du. 由题设有 2x∫02xf(u)du—∫02xuf(u)du=∫0xy(t)dt, 两边对x求导得 2∫02xf(u)du+4xf(2x)一4xf(2x)=y(x), 即 2∫02xf(u)du=y(x). 令x=1得∫02f(x)dx=[*]y(1). 又ey(1)+0.y(1)=e,所以,y(1)=1.故∫02f(x)dx=[*].

解析
转载请注明原文地址:https://jikaoti.com/ti/j2SRFFFM
0

最新回复(0)