首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=,则下列关于f(x)的单调性的结论正确的是 ( )
设f(x)=,则下列关于f(x)的单调性的结论正确的是 ( )
admin
2018-12-21
30
问题
设f(x)=
,则下列关于f(x)的单调性的结论正确的是 ( )
选项
A、在区间(一∞,0)内是严格单调增加,在(0,﹢∞)内是严格单调减少.
B、在区间(一∞,0)内是严格单调减少,在(0,﹢∞)内是严格单调增加.
C、在区间(一∞,0)与(0,﹢∞)内都是严格单调增加.
D、在区间(一∞,0)与(0,﹢∞)内都是严格单调减少.
答案
C
解析
取其分子,令φ(x)=xe
x
-e
x
﹢2,
有φ(0)=1﹥0,φ
’
(x)=xe
x
,当x﹤0时,φ
’
(x)﹤0;当x﹥0时,φ
’
(x)﹥0.
所以当x﹤0时,φ(x)﹥0;当x﹥0时,也有φ(x)﹥0.故知在区间(-∞,0)与(0,﹢∞)内均有f
’
(x)﹥0.
从而知f(x)在区间(-∞,0)与(0,﹢∞)内均为严格单调增加.
转载请注明原文地址:https://jikaoti.com/ti/itWRFFFM
0
考研数学二
相关试题推荐
(2006年)设函数f(u)在(0,+∞)内具有二阶导数,且z=f()满足等式(Ⅰ)验证f〞(u)+=;(Ⅱ)若f(1)=0,f′(1)=1,求函数f(u)的表达式.
(2006年)设f(χ,y)与φ(χ,y)均为可微函数,且φ′y(χ,y)≠0.已知(χ0,y0)是f(χ,y)在约束条件φ(χ,y)=0下的一个极值点,下列选项正确的是【】
(2007年)设f(χ)是区间[0,]上的单调、可导函数,且满足其中f-1是厂的反函数,求f(χ).
(2003年)设三阶方阵A、B满足A2B-A-B=E,其中E为三阶单位矩阵,A=,则|B|=_______.
(1987年)求过曲线y=χ2+1上的一点,使过该点的切线与这条曲线及χ,y轴在第一象限围成图形的面积最小,最小面积是多少?
(1999年)记行列式为f(χ),则方程f(χ)=0的根的个数为
(1992年)函数y=χ+2cosχ在区间[0,]上的最大值为_______.
若函数f(x)=asinx+处取得极值,则a=___________。
判断下列结论是否正确,并证明你的判断.(Ⅰ)若χn<yn(n>N),且存在极限χn=A,yn=B,则A<B;(Ⅱ)设f(χ)在(a,b)有定义,又c∈(a,b)使得极限f(χ)=A,则f(χ)在(a,b)有界;(Ⅲ)f(χ)=
设f(χ,y)在点(a,b)的某邻域具有二阶连续偏导数,且f′y(a,b)≠0,证明由方程f(χ,y)=0在χ=a的某邻域所确定的隐函数y=φ(χ)在χ=a处取得极值b=φ(a)的必要条件是:f(a,b)=0,f′χ(a,b)=0,且当r(a,b)>0时,
随机试题
Youcan______thedetails;justtellusthemajorpointshementionedduringthelastperiod.
胃溃疡腹痛的规律是十二指肠球部溃疡的腹痛规律是
胰头癌的最主要症状和体征是
项目经理对承包工程项目的()负全面领导责任。
下列各项中,在相关资产处置时不应转入当期损益的是()。
()以后,道教曾流传到朝鲜、日本、越南和东南亚一带。
在韦氏智力量表中,操作智商的英文缩写为()。
正确理解物质范畴要把握()。
纵观整个苹果产品组件的供应链,中国企业仍然处于价值增值的低端,利润微薄,仅能赚取低廉的加工费。亚洲开发银行的报告显示,一个iPhone(3G)的出口价格大约是179美元,在中国组装支出大约为6.5美元。也就是说,一个iPhone手机在中国的价值增值只有其出
请将"回收站"中名为"美丽城市.bmp"的文件删除。
最新回复
(
0
)