首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A、B都是m×n矩阵,证明: r(A+B)≤r(A)+r(B).
设A、B都是m×n矩阵,证明: r(A+B)≤r(A)+r(B).
admin
2018-04-15
51
问题
设A、B都是m×n矩阵,证明: r(A+B)≤r(A)+r(B).
选项
答案
将矩阵A与B按列分块为 A=[α
1
,α
2
,…,α
n
], B=[β
1
,β
2
,…,β
n
], 并记r(A)=r
1
,r(B)=r
2
.不失一般性,设α
1
,α
2
,…,[*]是A的列向量组的一个极大线性无关组,β
1
,β
2
,…,[*]是B的列量组的一个极大线性无关组,从而α
1
,α
2
,…,α
n
可由 α
1
,α
2
,…,[*]线性表示,β
1
,β
2
,…,β
n
可由β
1
,β
2
,…,[*]线性表示. 因此,α
1
+β
1
,α
2
+β
2
,…,α
n
+β
n
可由向量组[*]线性表示,故 r(A+B)≤r(A)+r(B).
解析
转载请注明原文地址:https://jikaoti.com/ti/iRVRFFFM
0
考研数学一
相关试题推荐
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0。证明α1,α2,…,αn线性无关;
求椭球面x2+2y2+z2=22上平行于平面x-y+2z=0的切平面方程。
若的收敛半径是________。
设有抛物线Γ:y=a-bx2(a>0,b>0),试确定常数a、b的值使得(1)Γ与直线y=x+1相切;(2)Γ与x轴所围图形绕y轴旋转所得旋转体的体积为最大。
设x2>x1>0,证明=sinξ-ξcosξ(x1<ξ<x2)。
已知n维向量α1,α2,…,αs线性无关,如果n维向量β不能由α1,α2,…,αs线性表出,而γ可由α1,α2,…,αs线性表出,证明α1,α1+α2,α2+α3,…,αs-1+αs,β+γ线性无关。
已知函数f(x)在区间[a,b]上连续,在(a,b)内f’(x)存在,设连接A(a,f(a)),B(b,f(b))两点的直线交曲线y=f(x)于点C(c,f(c)),且a<c<b,试证:在区间(a,b)内至少存在一点ξ,使f"(ξ)=0。
设y=e3x(C1cosx+C2sinx)(C1,C2为任意常数)为某二阶常系数齐次线性微分方程的通解,则该方程为________。
设z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导,且在x=1处取得极值g(1)=1,求。
随机试题
关于铣床工作台面的平面度精度检测标准,错误的说法是()。
Peoplefromdifferentculturessometimesdothingsthatmakeeachotheruncomfortable,sometimeswithoutrealizingit.MostAmer
肝显像时病变好发于肝边缘的为
七段显示器的各段符号如图7-63所示,那么“E”的共阳极七段显示器的显示码abcdefg应该是()。
(2010年)将3个球随机地放入4个杯子中,则杯中球的最大个数为2的概率是()。
在迅速泄压排放的场合和不允许介质在任何泄漏的场合应使用___________。()
下列有关公积金计提的表述中,正确的有()。
幼儿园户外场地最好的地面表层是塑胶地,因为塑胶地能防止幼儿摔伤。()
某区政府领导拟将一长期亏损的国有副食冷库基地改造成一个副食品批发市场。为此进行了一系列前期准备,包括项目审批、征地拆迁、建筑规划设计等。不曾想,外地一开发商已在离此地不远的地方率先投资兴建了一个综合市场,而综合市场中就有一个相当规模的副食品批发场区,足以满
ProfessorWangisgoingtogiveusalectureonthehistoryofAmericanliterature,butwhenandwhere______yet.
最新回复
(
0
)