首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若函数f(x)在x=1处的导数存在,则极限=_______.
若函数f(x)在x=1处的导数存在,则极限=_______.
admin
2018-06-27
115
问题
若函数f(x)在x=1处的导数存在,则极限
=_______.
选项
答案
9f’(1)
解析
按导数定义,将原式改写成
原式
=f’(1)+2f’(1)+6f’(1)=9f’(1).
转载请注明原文地址:https://jikaoti.com/ti/gpdRFFFM
0
考研数学二
相关试题推荐
设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求.
求极限
设4维向量组α=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时α1,α2,α3,α4线性相关?当α1,α2,α3,α4性相关时,求其一个极大线性无关组,并将其余向量用该
已知向量组α1=(1,2,-1,1),α2=(2,0,t,0),α3=(0,-4,5,-2)的秩为2,则t=________。
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.把向量β分别用α1,α2,α3,α4和它的极大线性无关组线性表出.
已知A*是A的伴随矩阵,则=__________.
设y=f(x)二阶可导,f’(x)≠0,它的反函数是x=φ(y),又f(0)=1,f’(0)=,f’’(0)=-1,则=__________.
已知实二次型f(x1,x2,x3)=a(x12+x22+x32)+4xqx2+4x1x3+4x2x3经正交变换*=Py可化成标准形f=6y12,则a=_________.
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b—a).(2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且,则f+’(0)存在,且f+’
(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(B)-f(A)=f’(ξ)(b一a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且,则f+’(0)存在,且f+’
随机试题
简析庄子《逍遥游》的论述思路。
设函数z=f(x,xy)+φ(x2+y2),其中函数f具有二阶连续偏导数,函数φ具有二阶连续导数,求.
Itisamazingthatasmallchildof3or4yearsofagecansingasongwithoutunderstandingitsmeaning______.
患者,男,60岁。因2小时前在参加登山比赛后突感心前区压榨性持续疼痛,伴大汗、头晕、恶心,向左后背及喉颈部放散,口含硝酸甘油3次,疼痛仍无明显缓解。既往有高血压5年,未用药控制,无糖尿病史,无烟酒嗜好,父母均有“冠心病”。查体:体温36.3℃,脉搏94次/
心动周期中,左心室内压急剧升高是在
下列句子中,没有语病的一项是()。
简述利用未公开信息交易罪与内幕交易罪的区别。
我国是()阶级领导的、以工农联盟为基础的(),国家一切权力属于人民。
设矩阵是矩阵A*的一个特征向量,λ是α对应的特征值,其中A*是矩阵A的伴随矩阵。试求a、b和λ的值。
Manyofthesedevelopmentsdrewontheexperienceoftherestoftheworld,ratherthanbeingconfinedwithintheboundariesof
最新回复
(
0
)